Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1082-1095    https://doi.org/10.11896/cldb.20010134
  无机非金属及其复合材料 |
U和UO2状态方程研究进展
简单1,2, 朱燮刚1, 刘瑜2, 宋海峰2,3, 赖新春1
1 中国工程物理研究院材料研究所,绵阳 621908
2 北京应用物理与计算数学研究所计算物理实验室,北京 100094
3 中国工程物理研究院高性能数值模拟软件中心,北京 100088
Research Progress of Equation of State for Uranium and Uranium Dioxide
JIAN Dan1,2, ZHU Xiegang1, LIU Yu2, SONG Haifeng2,3, LAI Xinchun1
1 Institute of Materials, China Academy of Engineering Physics, Mianyang 621908, China
2 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
3 CAEP Software Center for High Performance Numerical Simulation, Beijing 100088, China
下载:  全 文 ( PDF ) ( 5907KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铀和二氧化铀都是核科学与核工程中的重要材料,长期以来都不缺乏对它们的状态方程的研究。它们生产、存储和使用的环境复杂,涵盖宽温、宽压、强辐照、表面辐射、氦泡演化等极端条件,需要从实验和理论出发获取不同温度和压力下的材料物性,如晶体结构、相变行为、压缩性质、弹性性质与输运性质。此外,它们都属于强关联电子体系,拥有丰富的相图与奇特的物理性质,因此在实验与理论上研究它们的状态方程等物性具有极大的挑战性,该项研究一直属于前沿研究的热点。
   数十年来,人们采取各种实验手段,对铀和二氧化铀的热力学物性进行了测量;但由于铀及其化合物的特殊性质,相关实验研究工作仍存在一定程度上的困难。而另一方面,自1990年代以来,随着第一性原理方法的发展,使用密度泛函理论(DFT)方法对铀和二氧化铀物理性质展开计算的工作也不断涌现,不仅与实验工作相互验证,而且填补了实验条件无法企及的极端条件下的参数空白。随着计算机软硬件和数值算法的发展,相关DFT方法已经获得了较大突破,对铀和二氧化铀状态方程的描述也更为准确。其中,修正电子多体关联效应的动力学平均场方法(DMFT)以及修正声子振动能的平均场势方法(MFP)等算法是值得研究者进一步关注的。
   本文就20世纪以来对金属铀和二氧化铀实验和理论状态方程的研究进展进行了梳理,先后针对实验测量和理论计算两方面的晶体结构和相变行为、准静态压缩与冲击绝热压缩曲线、弹性力学、输运性质进行了概括总结,并探讨了二氧化铀晶体缺陷行为的相关研究工作。此外,本文还利用第一性原理方法对铀和二氧化铀的状态方程做了简要的计算,验证了已有公开文献中的结果,这将有助于后续研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
简单
朱燮刚
刘瑜
宋海峰
赖新春
关键词:  状态方程    二氧化铀  第一性原理  极端条件    
Abstract: Uranium and uranium dioxide are important materials in nuclear science and nuclear engineering, and there has been no lack of research on their equations of state for a long time. The environment for their production, storage, and use is complex, covering extreme conditions such as wide temperature, wide pressure, strong radiation, surface radiation, and helium bubble evolution. It is necessary to experimentally and theoretically obtain the physical properties of materials at different temperatures and pressures, such as crystal structure, phase transition behavior, compression properties, elastic properties and transport properties. In addition, they are all strongly correlated electronic systems with rich phase diagrams and peculiar physical properties. Therefore, experimentally and theoretically studying their physical properties, such as equations of state, is extremely challenging and has always been a hot issue in frontier research.
Over the past decades, various experimental methods have been used to measure the physical properties of uranium and uranium dioxide; however, due to the special properties of uranium and its compounds, there is a certain degree of difficulty in their experimental measurement. On the other hand, since the 1990s, with the development of first-principles methods, the calculation of the physical properties of uranium and ura-nium dioxide using the density functional theory (DFT) method has also emerged, which can be a useful addition to experimental data. With the development of computing power and calculation methods, correction methods based on the DFT method have been proposed, and the description of the uranium and uranium dioxide equations of state has become more accurate. Among them, the dynamical mean-field theory (DMFT), the mean-field potential (MFP) and other algorithms are worthy of our further attention.
This article summarizes the research progress of experimental and theoretical equations of state of metallic uranium and uranium dioxide since the last century, summarizes the properties of crystal structure and phase transition behavior, quasi-static and impact adiabatic compression curve, elastic and transport properties of experimental measurement and theoretical calculation, respectively, and additionally discusses the uranium dioxide crystal defect behavior. At the same time, we use first-principles methods to make a brief calculation of the equations of state of uranium and uranium dioxide, verify the results in the existing public literature, and help subsequent related research.
Key words:  equation of state    uranium    uranium dioxide    first-principles    extreme conditions
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  O469  
基金资助: 科学挑战专题资助 (TZZT2019-D1; TZ2016004);表面物理与化学重点实验室基金项目(WDZC201901)
作者简介:  简单,2017年6月毕业于中国科学技术大学,获得理学学士学位,现为中国工程物理研究院材料研究所核燃料循环与材料专业硕士研究生,在朱燮刚副研究员和宋海峰研究员的联合指导下进行学习研究。目前主要研究领域为f电子材料的第一性原理计算。
朱燮刚,中国工程物理研究院材料研究所副研究员、硕士研究生导师。2006年本科毕业于清华大学物理系,2014年获得清华大学物理系理学博士学位。主要从事拓扑绝缘体、f电子金属和重费米子体系材料的分子束外延制备及其电子结构表征方面的工作。近年来,在相关领域发表SCI收录论文30余篇,包括Nature Physics, Science Advance, Advanced Materials, Scientific Reports, Physics Review B, Nano Research等。
刘瑜,北京应用物理与计算数学研究所副研究员,2007年本科毕业于武汉大学,2013年获清华大学凝聚态物理学博士学位,2013—2015年在中国科学院物理研究所从事博士后研究工作,2015年至今在北京应用物理与计算数学研究所从事研究工作。研究兴趣为强关联材料平衡态和动力学物性的理论计算与数值模拟。研究方法主要是构建和利用唯象模型对材料的普适物理特性进行定性分析与理论计算,发展强关联第一性原理DFT+DMFT/Gutzwiller计算方法,并进行定量数值模拟与数据分析。发表SCI论文20余篇,获软件著作权1项。
引用本文:    
简单, 朱燮刚, 刘瑜, 宋海峰, 赖新春. U和UO2状态方程研究进展[J]. 材料导报, 2021, 35(1): 1082-1095.
JIAN Dan, ZHU Xiegang, LIU Yu, SONG Haifeng, LAI Xinchun. Research Progress of Equation of State for Uranium and Uranium Dioxide. Materials Reports, 2021, 35(1): 1082-1095.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010134  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1082
1 Cox D L. Physical Review Letters,1987,59(11),1240.
2 Hampton R N, Saunders G A, Harding J H, et al. Journal of Nuclear Materials,1987,150(1),17.
3 Anisimov V I, Zaanen J, Andersen O K. Physical Review B,1991,44(3),943.
4 Georges A, Kotliar G, Krauth W, et al. Reviews of Modern Physics,1996,68(1),13.
5 Wang Y. Physical Review B,2000,61(18),R11863.
6 Song H F, Liu H F. Physical Review B,2007,75(24),245126.
7 Jacob C W, Warren B E. Journal of the American Chemical Society,1937,59(12),2588.
8 Tucker C W. Acta Crystallographica,1951,4(5),425.
9 Thewlis J, Steeple H. Acta Crystallographica,1954,7(4),323.
10 Lawson A C, Olsen C E, Richardson J W, et al. Acta Crystallographica Section B: Structural Science,1988,44(2),89.
11 Wilson A S, Rundle R E. Acta Crystallographica,1949,2(2),126.
12 Klement W, Jayaraman A, Kennedy G C. Physical Review,1963,129(5),1971.
13 Ganguly J, Kennedy G C. Journal of Physics and Chemistry of Solids,1973,34,2272.
14 Cannon J F. Journal of Physical and Chemical Reference Data,1974,3(3),781.
15 Fisher E S, McSkimin H J. Physical Review,1961,124(1),67.
16 Barrett C S, Mueller M H, Hitterman R L. Physical Review,1963,129(2),625.
17 Steinitz M O, Burleson C E, Marcus J A. Journal of Applied Physics,1970,41(13),5057.
18 Smith T F, Fisher E S. Journal of Low Temperature Physics,1973,12(5-6),631.
19 Dewaele A, Bouchet J, Occelli F, et al. Physical Review B,2013,88(13),134202.
20 Akella J, Smith G S, Grover R, et al. High Pressure Research,1990,2(5-6),295.
21 Yoo C S, Cynn H, Söderlind P. Physical Review B,1998,57(17),10359.
22 Le Bihan T, Heathman S, Idiri M, et al. Physical Review B,2003,67(13),134102.
23 Wills J M, Eriksson O. Physical Review B,1992,45(24),13879.
24 Söderlind P, Eriksson O, Johansson B, et al. Physical Review B,1994,50(11),7291.
25 Jones M D, Boettger J C, Albers R C, et al. Physical Review B,2000,61(7),4644.
26 Richard N, Bernard S, Jollet F, et al. Physical Review B,2002,66(23),235112.
27 Söderlind P. Physical Review B,2002,66(8),085113.
28 Li L, Wang Y. Physical Review B,2001,63(24),245108.
29 Adak S, Nakotte H, de Chatel P F, et al. Physica B: Condensed Matter,2011,406(17),3342.
30 Kruglov I A, Yanilkin A, Oganov A R, et al. Physical Review B,2019,100(17),174104.
31 Hood R Q, Yang L H, Moriarty J A. Physical Review B,2008,78(2),024116.
32 Zhang Q L, Zhao Y H, Ma G C, et al. Chinese Journal of High Pressure Physics,2016,30(1),32(in Chinese).
张其黎,赵艳红,马桂存,等.高压物理学报,2016,30(1),32.
33 Bridgman P W. In: Proceedings of the American Academy of Arts and Sciences. JSTOR,1948,pp.55.
34 Merx H, Moussin C. In: High pressure science and technology: procee-dings of the 7th International AIRAPT Conference:(organised jointly with the EHPRG), Le Creusot, France,1979,pp.204.
35 Benedict U, Andreetti G D, Fournier J M, et al. Journal de Physique Lettres,1982,43(6),171.
36 Marsh S P. LASL shock Hugoniot data, Univ of California Press,1980.
37 Belashchenko D K, Smirnova D E, Ostrovski O I. High Temperature,2010,48(3),363.
38 Fisher E S, McSkimin H J. Journal of Applied Physics,1958,29(10),1473.
39 Beeler B, Deo C, Baskes M, et al. Journal of Nuclear Materials,2013,433(1-3),143.
40 Li J H, Ren Q B, Lu C H, et al. Journal of Alloys and Compounds,2012,516,139.
41 Bouchet J, Albers R C. Journal of Physics: Condensed Matter,2011,23(21),215402.
42 Yang J W, Gao T, Liu B Q, et al. The European Physical Journal B,2014,87(6),130.
43 Konings R J M, Beneš O. Journal of Physical and Chemical Reference Data,2010,39(4),043102.
44 Ren Z, Wu J, Ma R, et al. Journal of Nuclear Materials,2016,480,80.
45 Touloukian Y S, Powell R W, Ho C Y, et al. IFI/Plenum, New York, Washington,1970,461.
46 Takahashi Y, Yamawaki M, Yamamoto K. Journal of Nuclear Materials,1988,154(1),141.
47 Kim Y S, Cho T W, Sohn D S. Journal of Nuclear Materials,2014,445(1-3),272.
48 Zhou S, Jacobs R, Xie W, et al. Physical Review Materials,2018,2(8),083401.
49 Freeman A J, Darby J B. The actinides: electronic structure and related properties, Vol. 2. Academic Press,2013.
50 Arajs S, Colvin R V. Journal of the Less Common Metals,1964,7(1),54.
51 Arajs S, Flora R H, Anderson E E. Journal of Nuclear Materials,1970,37(1),89.
52 Sahu P Ch, Yousuf M, Rajan K G. Physica B: Condensed Matter,1993,183(1-2),145.
53 Dmitriev V M, Prentslau N N, Gurevich A M, et al. Low Temperature Physics,2004,30(6),483.
54 Slowinski E, Elliott N. Acta Crystallographica,1952,5(6),768.
55 Idiri M, Le Bihan T, Heathman S, et al. Physical Review B,2004,70(1),014113.
56 Benjamin T M, Zou G, Mao H K, et al. Carnegie Inst Wash Yearb,1981,80,280.
57 Gréaux S, Gautron L, Andrault D, et al. American Mineralogist,2008,93(7),1090.
58 Crowhurst J C, Jeffries J R, Åberg D, et al. Journal of Physics: Condensed Matter,2015,27(26),265401.
59 Castell M R, Muggelberg C, Briggs G A D, et al. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena,1996,14(2),966.
60 Faber Jr J, Lander G H. Physical Review B,1976,14(3),1151.
61 Arko A J, Koelling D D, Boring A M, et al. Journal of the Less Common Metals,1986,122,95.
62 Petit T, Morel B, Lemaignan C, et al. Philosophical Magazine B,1996,73(6),893.
63 Dudarev S L, Manh D N, Sutton A P. Philosophical Magazine B,1997,75(5),613.
64 Dudarev S L, Botton G A, Savrasov S Y, et al. Physica Status Solidi (A),1998,166(1),429.
65 Anisimov V I, Aryasetiawan F, Lichtenstein A I. Journal of Physics: Condensed Matter,1997,9(4),767.
66 Boettger J C, Ray A K. International Journal of Quantum Chemistry,2000,80(4-5),824.
67 Geng H Y, Chen Y, Kaneta Y, et al. Physical Review B,2007,75(5),054111.
68 Song H X, Geng H Y, Wu Q. Physical Review B,2012,85(6),064110.
69 Wang B T, Zhang P, Lizárraga R, et al. Physical Review B,2013,88(10),104107.
70 Petit L, Svane A, Szotek Z, et al. Physical Review B,2010,81(4),045108.
71 Prodan I D, Scuseria G E, Martin R L. Physical Review B,2007,76(3),033101.
72 Wen X D, Martin R L, Henderson T M, et al. Chemical Reviews,2013,113(2),1063.
73 Koloren J, Shick A B, Lichtenstein A I. Physical Review B,2015,92(8),085125.
74 Huang L, Wang Y, Werner P. arXiv preprint, arXiv: 1506.06548,2015.
75 Pujol M C, Idiri M, Havela L, et al. Journal of Nuclear Materials,2004,324(2-3),189.
76 Lanatà N, Yao Y, Deng X, et al. Physical Review Letters,2017,118(12),126401.
77 Fredenburg D A. Los Alamos National Lab.(LANL), Los Alamos, NM (United States),2013.
78 Gust W H. Journal of Nuclear Materials,1982,107(2),290.
79 Wachtman J B, Wheat M L, Anderson H J, et al. Journal of Nuclear Materials,1965,16(1),39.
80 Fritz I J. Journal of Applied Physics,1976,47(10),4353.
81 Kanchana V, Vaitheeswaran G, Svane A, et al. Journal of Physics: Condensed Matter,2006,18(42),9615.
82 Pickard C J, Winkler B, Chen R K, et al. Physical Review Letters,2000,85(24),5122.
83 Sanati M, Albers R C, Lookman T, et al. Physical Review B,2011,84(1),014116.
84 Devey A J. Journal of Nuclear Materials,2011,412(3),301.
85 Konings R J M, Beneš O, Kovács A, et al. Journal of Physical and Chemical Reference Data,2014,43(1),013101.
86 Yun Y, Legut D, Oppeneer P M. Journal of Nuclear Materials,2012,426(1-3),109.
87 Fink J K. Journal of Nuclear Materials,2000,279(1),1.
88 Kurosaki K, Yamada K, Uno M, et al. Journal of Nuclear Materials,2001,294(1),160.
89 Yin Q, Savrasov S Y. Physical Review Letters,2008,100(22),225504.
90 Colbert M, Ribeiro F, Tréglia G. Journal of Applied Physics,2014,115(3),034902.
91 Pang J W L, Buyers W J L, Chernatynskiy A, et al. Physical Review Letters,2013,110(15),157401.
92 Wang B T, Zheng J J, Qu X, et al. Journal of Alloys and Compounds,2015,628,267.
93 Bates J L, Hinman C A, Kawada T. Journal of the American Ceramic Society,1967,50(12),652.
94 Dudney N J, Coble R L, Tuller H L. Journal of the American Ceramic Society,1981,64(11),627.
95 Kang S H, Lee J H, Yoo H I, et al. Journal of Nuclear Materials,2000,277(2),339.
96 Ruello P, Petot-Ervas G, Petot C, et al. Journal of the American Ceramic Society,2005,88(3),604.
97 Willis B T M. Journal de Physique,1964,25(5),431.
98 Willis B T M. Acta Crystallographica Section A,1978,34(1),88.
99 Bevan D J M, Grey I E, Willis B T M. Journal of Solid State Chemistry,1986,61(1),1.
100 Barner J O, Cunningham M E, Freshley M D, et al. Nuclear Technology,1993,102(2),210.
101 Sonoda T, Kinoshita M, Ray I L F, et al. Nuclear Instruments and Me-thods in Physics Research Section B: Beam Interactions with Materials and Atoms,2002,191(1-4),622.
102 Iwasawa M, Chen Y, Kaneta Y, et al. Materials Transactions,2006,47(11),2651.
103 Geng H Y, Chen Y, Kaneta Y, et al. Physical Review B,2008,77(10),104120.
104 Geng H Y, Chen Y, Kaneta Y, et al. Physical Review B,2008,77(18),180101.
105 Geng H Y, Chen Y, Kaneta Y, et al. Applied Physics Letters,2008,93(20),201903.
106 Chen Y, Geng H Y, Kaneta Y, et al. Computational Materials Science,2010,49(4),S364.
107 Geng H Y, Song H X, Jin K, et al. Physical Review B,2011,84(17),174115.
108 Geng H Y, Song H X, Wu Q. Physical Review B,2012,85(14),144111.
109 Geng H Y, Song H X, Wu Q. Physical Review B,2013,87(17),174107.
110 Le Page Y, Saxe P. Physics Review B,2002,65(10),104104.
[1] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[2] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[3] 马亮, 杨静, 王继平, 许奎. 凝胶注模制备环形二氧化铀芯块工艺研究[J]. 材料导报, 2020, 34(Z1): 157-160.
[4] 俞坤, 刘金香, 谢水波, 刘迎九, 葛玉杰. 聚吡咯/石墨相氮化碳复合材料吸附铀(Ⅵ)的性能与机制[J]. 材料导报, 2020, 34(23): 23020-23026.
[5] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[6] 李鑫, 谢辉, 魏鑫, 张亚龙. Mg2Si1-xSnx合金热电性能的第一性原理计算预测[J]. 材料导报, 2020, 34(18): 18098-18103.
[7] 徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
[8] 赵宇鹏, 贺勇, 张敏, 史俊杰. 非金属掺杂二维ZnS的磁性和光学性质的第一性原理研究[J]. 材料导报, 2020, 34(10): 10013-10017.
[9] 孙艳兵, 吕日文, 韩雪雯, 钟玮鸿, 黄剑, 刘畅, 戴荧, 曹小红. 铀(Ⅵ)在卟啉基MOF上的吸附行为[J]. 材料导报, 2020, 34(10): 10108-10113.
[10] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[11] 黄泰愚, 范舟, 刘建仪. 硫在镍基合金钝化膜NiO表面吸附的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 380-382.
[12] 张然, 谢东, 冷永祥, 景凤娟, 黄楠. NiTi合金(B2, B19’和R相)键合特征与弹性性质的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 383-388.
[13] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[14] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[15] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed