Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1096-1104    https://doi.org/10.11896/cldb.20050019
  无机非金属及其复合材料 |
生物陶瓷支架促进再生组织血管生成和骨生成的研究进展
樊光娆, 苏海军, 郭敏, 张军, 高嘉亮, 郝宣成, 宋强, 刘林, 傅恒志
西北工业大学凝固国家重点实验室,西安 710072
Research Progress on Bioceramics Scaffolds in Promoting Angiogenesis and Osteogenesis in Regenerated Tissues
FAN Guangrao, SU Haijun, GUO Min, ZHANG Jun, GAO Jialiang, HAO Xuancheng, SONG Qiang, LIU Lin, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 4607KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,组织工程作为一种有前景的治疗和修复骨缺损的方法受到了广泛的关注。支架是组织工程的基本组成部分,它能够为骨组织再生提供必要的支撑和导向作用。骨组织修复过程中需要在支架内部形成一个血管网络来为细胞迁移、增殖和分化提供营养和氧气,从而实现组织再生。因此,组织工程血管化是实现骨组织再生的首要前提。生物陶瓷凭借其特殊的化学成分、高的压缩强度和优异的生物活性,成为骨再生支架的有力候选材料。
   然而,生物陶瓷支架在植入体内后,往往需要较长的时间才能形成血管网络。这就意味着组织内部的细胞会因长时间缺乏营养而死亡,影响组织再生效果。因此,近些年来,除研究材料成分对再生组织的血管生成和骨生成效果的影响外,研究者还从支架结构设计和支架外部的环境因素着手,以进一步提高生物陶瓷支架诱导血管生成和骨生成的能力。
   生物复合陶瓷不仅能提高支架的力学性能,还能改善支架的生物活性。分级多孔设计可以模拟自然骨的结构,从而更好地促进再生组织的血管化和骨生成。加载生长因子、元素掺杂和细胞植入可以为血管化提供更好的外部环境,从而更好地实现组织再生。这些因素可以协同发挥作用来促进生物陶瓷支架的血管生成和骨生成。
   本文从三个方面总结了影响生物陶瓷支架促进再生组织血管生成和骨生成的因素——支架材料、支架结构和支架所处的环境,并系统分析了以上因素的影响机理。最后,展望了生物陶瓷支架的发展趋势,以期为生物陶瓷的设计、加工和生物工程应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊光娆
苏海军
郭敏
张军
高嘉亮
郝宣成
宋强
刘林
傅恒志
关键词:  生物陶瓷支架  组织工程  血管生成  骨生成    
Abstract: Tissue engineering has acquired remarkable attention as a promising strategy to treat and restore bone defects during recent years. A scaffold is a fundamental component for tissue engineering, which provides a necessary support and guidance for bone tissue regeneration. It is necessary to form a vascular network inside the scaffold to provide nutrients and oxygen for cells to migrate, proliferate and differentiate, and then realize tissue regeneration in the process of bone tissue repair. Consequently, the vascularization is the first requirement to achieve bone tissue regeneration. Bioceramics have become competetive candidates as scaffold materials for bone tissue regeneration due to the special chemical composition, high compressive strength and excellent bioactivity.
However, a vascular networks formed in the bioceramic scaffolds will take a long time after implantation in vivo, meaning that cells in the middle of the tissue will be straved of nutrients for a long time and then die. This urges intensive research works to study the effect of material, structure and environmental factors of the bioceramic scaffolds on the osteogenesis and vasculature, aiming at achieving better tissue regeneration.
The composites can not only improve the mechanical properties of the scaffold, but also improve the biological activity of the scaffold. Designing hierarchical porous structure and loading growth factors can better stimulate angiogenesis and osteogenesis of the regenerated tissue. These aspects can be considered in combination to promote the angiogenesis and osteogenesis of the bioceramic scaffolds.
This review summarizes the factors affecting angiogenesis and osteogenesis of regenerated tissues in the bioceramic scaffolds from three aspects: scaffold material, scaffold structure and environmental factors of the scaffold. Meanwhile, the influence mechanisms of the above factors are systematically analyzed. Finally, the development trend of the bioceramic scaffolds is prospected expecting to provide references for the design, processing and bioengineering applications of the bioceramics.
Key words:  bioceramic scaffolds    tissue engineering    angiogenesis    osteogenesis
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  TQ174  
基金资助: 国家重点基础研究发展计划项目(2017YFB1103500; 2018YFB1106600);国家自然科学基金委优青项目(51822405);陕西省重点研发计划项目(2018ZDCXL-GY-09-04);凝固技术国家重点实验室自主课题(2019-QZ-02)
作者简介:  樊光娆,2015年6月毕业于太原理工大学,获得工学学士学位。现为西北工业大学凝固国家重点实验室博士研究生,在张军教授和苏海军教授的指导下进行研究。目前主要研究领域为定向凝固共晶生物陶瓷。
苏海军,西北工业大学材料学院教授,博士研究生导师。国家自然科学基金优秀青年基金获得者,入选国家首批“香江学者”计划,陕西省“青年科技新星”,陕西高校青年创新团队学术带头人。主要从事先进生物复合陶瓷设计、制备及应用研究,主持包括国家自然科学基金4项等在内的国家及省部级科研项目20余项,研究成果在SmallACS Applied Materials and InterfacesJournal of the European Ceramic Society等国际著名学术期刊上发表SCI论文100余篇。获授权中国发明专利26项以及1项美国发明专利。参编专著3部。获陕西省科学技术一等奖和陕西省青年科技奖各1项。
引用本文:    
樊光娆, 苏海军, 郭敏, 张军, 高嘉亮, 郝宣成, 宋强, 刘林, 傅恒志. 生物陶瓷支架促进再生组织血管生成和骨生成的研究进展[J]. 材料导报, 2021, 35(1): 1096-1104.
FAN Guangrao, SU Haijun, GUO Min, ZHANG Jun, GAO Jialiang, HAO Xuancheng, SONG Qiang, LIU Lin, FU Hengzhi. Research Progress on Bioceramics Scaffolds in Promoting Angiogenesis and Osteogenesis in Regenerated Tissues. Materials Reports, 2021, 35(1): 1096-1104.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050019  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1096
1 Matai I, Kaur G, Seyedsalehi A, et al. Biomaterials,2020,226,119536.
2 Ma H, Feng C, Chang J, et al. Acta Biomaterialia,2018,79,37.
3 Rather H A, Jhala D, Vasita R. Materials Science & Engineering C,2019,103,109761.
4 Dawson D R, El-Ghannam A, Naung N Y. Dental Clinics of North America,2019,63(3),433.
5 Rouwkema J, Rivron N C, van Blitterswijk C A. Trends in Biotechnology,2008,26(8),434.
6 Olsen B R, Reginato A M, Wang W F. Annual Review of Cell and Deve-lopmental Biology,2000,16,191.
7 Collin-Osdoby P. Journal of Cellular Biochemistry,1994,55(3),304.
8 Wang C, Huang W, Zhou Y, et al. Bioactive Materials,2020,5,82.
9 Baino F, Novajra G, Vitale-Brovarone C. Frontiers in Bioengineering and Biotechnology,2015,3,202.
10 He J, Chen G B, Liu M Y, et al. Material Science & Engineering C,2020,108,110411.
11 Kim J, Kim H N, Lim K T, et al. Scientific Reports,2013,3,3552.
12 Bai Y, Yin G F, Huang Z B, et al. International Immunopharmacology,2013,16,214.
13 Dorozhkin S V. Ceramics International,2015,41,13913.
14 Ronay F C, Wegehaupt F J, Becker K, et al. Journal of Dentistry,2019,84,89.
15 Esposti M D, Chiellini F, Bondioli F, et al. Materials Science & Engineering C,2019,100,286.
16 Huang J, Best S M, Bonfield W, et al. Journal of Materials Science: Materials in Medicine,2004,15,441.
17 Szpalski C, Barr J, Wetterau M, et al. Neurosurgical Focus,2010,29(6),1.
18 Dos Santos L A, Carrodeguas R G, Rogero S O, et al. Biomaterials,2002,23,2035.
19 Wu S C, Hsu H C, Hsu H K, et al. Materials Characterization,2011,62(5),526.
20 Hench L L. Journal of Materials Science: Materials in Medicine,2015,26,86.
21 Le Nihouannen D, Duval L, Lecomte A, et al. Journal of Materials Science: Materials in Medicine,2007,18,1983.
22 Stastny P, Sedlacek R, Suchy T, et al. Materials Science & Engineering C,2019,100,544.
23 Zhao N, Wang Y, Qin L, et al. Royal Society of Chemistry Advances,2017,7,43186.
24 Lu J, Blary M C, Vavasseur S, et al. Journal of Materials Science: Materials in Medicine,2004,15,361.
25 Hench L L, Splinter R J, Allen W C, et al. Journal of Biomedical Materials Research,1971,5,117.
26 Baino F. Ceramics International,2018,44,14953.
27 Fernandes J S, Gentil P, Pires R A, et al. Acta Biomaterialia,2017,59,2.
28 Leach J K, Kaigler D, Wang Z, et al. Biomaterials,2006,27(17),3249.
29 Cao W P, Hench L L. Ceramics International,1996,22,493.
30 Wu Z N, Zhou X, Zhang Y, et al. Journal of Non-Crystalline Solids,2019,517,1.
31 Lalzawmliana V, Anand A, Roy M, et al. Materials Science & Enginee-ring C,2020,106,110180.
32 Ding S J, Shie M Y, Wang C Y. Journal of Materials Chemistry,2009,19,1183.
33 Li H Y, Xue K, Kong N, et al. Biomaterials,2014,35,3803.
34 Du Z Y, Leng H J, Guo L Y, et al. Composites Part B: Engineering,2020,190,107937.
35 Xu S F, Lin K L, Wang Z, et al. Biomaterials,2008,29(17),2588.
36 Wu C T, Ramaswamy Y, Kwik D, et al. Biomaterials,2007,28(21),3171.
37 Du Z Y, Zhao Z D, Liu H H, et al. Materials Science & Engineering C,2020,113,1110053.
38 Zhao W Y, Wang J Y, Zhai W Y, et al. Biomaterials,2005,26(31),6113.
39 Huang S P, Huang B Y, Zhou K C, et al. Materials Letters,2004,58,3582.
40 Lee B T, Kim K H, Youn H C, et al. Journal of the American Ceramic Society,2007,90(2),629.
41 Zhang Y L, Xia L G, Zhai D, et al. Nanoscale,2015,7,19207.
42 Yang Y, Yang S B, Wang Y G, et al. Acta Biomaterialia,2016,46,112.
43 Goncalves E M, Oliveira F J, Silva R F, et al. Journal of Biomedical Materials Research B: Applied Biomaterials,2016,104B(6),1210.
44 Pinto R V, Gomes P S, Fernandes M H, et al. Materials Science & Engineering C,2020,109,110557.
45 Soni R, Kumar N V, Chameettachal S, et al. Materials Today: Procee-dings,2019,15,294.
46 Wang G S. Materials Letters,2020,275,128131.
47 Martιnez E, Engel E, Planell J A. Annals of Anatomy-Anatomischer Anzeiger,2009,191(1),126.
48 Erol-Taygun M, Zheng K, Boccaccini A R. International Journal of Applied Glass Science,2013,4(2),136.
49 Hong Y Z, Yang D Z. Materials Reports B: Research Papers,2018,32(9),3239(in Chinese).
洪雅真,杨丁柱.材料导报:研究篇,2018,32(9),3239.
50 Cho Y S, Quan M L, Kang N U, et al. European Polymer Journal,2020,134,109814.
51 Jodati H, Yιlmaz B, Evis Z. Ceramics International,2020,46(10),15725.
52 Perez R A, Mestres G. Materials Science and Engineering C,2016,61,922.
53 Walthers C M, Nazemi A K, Patel S L, et al. Biomaterials,2014,35(19),5129.
54 Haugen H J, Lyngstadaas S P, Rossi F, et al. Journal of Clinical Perio-dontology,2019,46(Suppl.21),92.
55 Woodard J R, Hilldore A J, Lan S K, et al. Biomaterials,2007,28(1),45.
56 Du Y Y, Guo G L, Wang G L, et al. Biomaterials,2019,218,119334.
57 Xu M C, Li H, Zhai D, et al. Journal of Materials Chemistry B,2015,3,3799.
58 Xu M C, Zhang Y F, Zhai D, et al. Biomaterials Science,2013,1,933.
59 Cha H D, Hong J M, Kang T Y, et al. Journal of Micromechanics and Microengineering,2012,22,125002.
60 Wang J, Su Y Y, Xu L Z, et al. Materials Science & Engineering C,2020,116,111220.
61 Pérez R A, Won J E, Knowles J C, et al. Advanced Drug Delivery Review,2013,65,471.
62 Chen Z Y, Yan X C, Yin S, et al. Materials Science & Engineering: C,2020,106,110289.
63 Kruyt M C, de Bruijn J D, Wilson C E, et al. Tissue engineering,2003,9(2),327.
64 Karageorgiou V, Kaplan D. Biomaterials,2005,26(27),5474.
65 Kasten P, Beyen I, Niemeyer P, et al. Acta Biomaterialia,2008,4(6),1904.
66 Hollister S J, Maddox R D, Taboas J M. Biomaterials,2002,23(20),4095.
67 Gariboldi M I, Best S M. Frontiers in Bioengineering and Biotechnology,2015,3,151.
68 Zadpoor A A. Biomaterials Science,2015,3,231.
69 Roohani-Esfahani S I, Newman P, Zreiqat H. Scientific Reports,2016,6,19468.
70 Serra T, Planell J A, Navarro M. Acta Biomaterialia,2013,9,5521.
71 Feng C, Zhang W J, Deng C J, et al. Advanced Science,2017,4(12),1700401.
72 Daly A C, Pitacco P, Nulty J, et al. Biomaterials,2018,162,34.
73 Saran U, Piperni S G, Chatterjee S. Archives of Biochemistry and Biophy-sics,2014,561,109.
74 Flamme I, Frolich T, Risau W. Journal of Cellular Physiology,1997,173,206.
75 Kanczler J M, Oreffo R O. European Cells and Material,2008,15,100.
76 Pezzotti G, Enomoto Y, Zhu W, et al. Journal of the Mechanical Behavior of Biomedical Materials,2016,54,328.
77 Miller T W, Isenberg J S, Roberts D D. Chemical Reviews,2009,109(7),3099.
78 Lee S J, Kim M E, Nah H, et al. Journal of Colloid and Interface Science,2019,537,333.
79 Zisch A H, Lutolf M P, Hubbell J A. Cardiovascular Pathology,2003,12,295.
80 Rives C B, des Rieux A, Zelivyanskay M, et al. Biomaterials,2009,30,394.
81 Somayaji B V, Jariwala U, Jayachandran P, et al. Journal of Periodonto-logy,1998,69(4),409.
82 Huang M, Vitharana S N, Peek L J, et al. Biomacromolecules,2007,8(5),1607.
83 Murphy W L, Simmons C A, Kaigler D, et al. Journal of Dental Research,2004,83(3),204.
84 Fahimipour F, Rasoulianboroujeni M, Dashtimoghadam E, et al. Dental Materials,2017,33(11),1205.
85 Des Rieux A, Ucakar B, Mupendwa B P K, et al. Journal of Controlled Release,2011,150,272.
86 Dou D D, Zhou G, Liu H W, et al. International Journal of Biological Macromolecules,2019,123,622.
87 Chen S S, Shi Y F, Zhang X, et al. Materials Science & Engineering C,2020,112,110893.
88 Bao X G, Zhu L J, Huang X D, et al. Scientific Reports,2017,7,7814.
89 Sukul M, Linh N T B, Min Y K, et al. Tissue Engineering Part A,2015,21,11.
90 Zhang W J, Feng C, Yang G Z, et al. Biomaterials,2017,135,85.
91 Bose S, Tarafder S, Bandyopadhyay A. Annals of Biomedical Enginee-ring,2017,45(1),261.
92 Li H, Chang J. Acta Biomaterialia,2013,9(6),6981.
93 Zhu H Y, Zhai D, Lin C C, et al. Journal of Materials Chemistry B,2016,4,6200.
94 Ikeda E, Achen M G, Breier G, et al. The Journal of Biological Chemistry,1995,270,19761.
95 Riddle R C, Khatri R, Schipani E, et al. Journal of Molecular Medicine,2009,87(6),583.
96 Wenger R H, Rolfs A, Spielmaan, et al. Blood,1998,91,3471.
97 Wang G L, Jiang B H, Rue E A, et al. Proceedings of the National Aca-demy of Sciences of the United States of America,1995,92,5510.
98 Forsythe J A, Jiang B H, Iyer N V, et al. Molecular and Cellular Biology,1996,16,4604.
99 Zhu M, Zhao S C, Chen X, et al. Biomaterials Science,2015,3(8),1236.
100 Yoo Y J, Oh J H, Zhang Q K, et al. Journal of Endodontics,2018,44(1),98.
101 Sakai V T, Zhang Z, Dong Z, et al. Journal of Dental Research,2010,89(8),791.
102 Vailhé B, Vittet D, Feige J J. Laboratory Investigation,2001,81(4),439.
103 Lin K L, Xia L G, Li H Y, et al. Biomaterials,2013,34,10028.
[1] 拜凤姣, 王卉, 陈晓敏, 吴晨星, 张克勤. 丝素蛋白基纺织材料及其在生物医学领域的应用[J]. 材料导报, 2020, 34(7): 7154-7160.
[2] 石敏, 陶思洁, 李丹, 王鑫, 徐水, 朱勇. 面向组织工程应用的再生丝素/海藻酸钙海绵:制备、表征及体内、体外性能研究[J]. 材料导报, 2020, 34(4): 4158-4165.
[3] 郭雨晴, 张菁, 李颂. 层层自组装技术在组织工程领域的研究进展[J]. 材料导报, 2019, 33(Z2): 538-541.
[4] 晋艳茹, 贾庆明, 陕绍云. 羟基磷灰石/纤维素复合材料在骨组织工程中的研究进展[J]. 材料导报, 2019, 33(23): 4008-4015.
[5] 钟红荣, 张岩, 包红, 方艳, 吴婷芳, 朱勇, 张小宁, 徐水. 丝素/明胶/壳聚糖支架材料的构建及表征[J]. 材料导报, 2018, 32(22): 3954-3960.
[6] 胡建新, 李凤清, 周雪琴, 刘东志, 汪天洋, 李巍. 卟啉-多肽超分子组装体系的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 128-137.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed