Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7154-7160    https://doi.org/10.11896/cldb.19040294
  高分子与聚合物基复合材料 |
丝素蛋白基纺织材料及其在生物医学领域的应用
拜凤姣, 王卉, 陈晓敏, 吴晨星, 张克勤
苏州大学纺织与服装工程学院,现代丝绸国家工程实验室,苏州 215123
Silk Fibroin-based Textile Materials and Their Application in Biomedical Field
BAI Fengjiao, WANG Hui, CHEN Xiaomin, WU Chenxing, ZHANG Keqin
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
下载:  全 文 ( PDF ) ( 4253KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 丝素蛋白是一种天然蛋白质聚合物,可从蚕茧中提取,已在纺织工业领域使用了数千年。随着对可植入和可降解生物材料需求的增大,丝素蛋白材料凭借优良的生物相容性、生物降解性、非免疫原性,以及来源丰富,并可与其他生物材料协同作用形成具备独特性能的生物复合材料等优势,在生物医学领域越来越受到人们的关注。以丝素蛋白纤维为基础的生物医用纺织材料的多功能性和可持续性为通过环保方法定制生物材料以满足特定生物医学应用提供了新的研究思路与解决方案。
   天然丝素蛋白纤维可通过蚕丝脱胶得到,经溶解后可制成再生丝素蛋白溶液,而再生丝素蛋白溶液可进一步通过不同的成型方式得到再生丝素纤维材料。根据生物医学领域的实际应用需求,丝素蛋白纤维可经机织、针织、编织、非织、静电纺、三维打印等多种技术手段制成一维、二维或三维生物医用纺织品,在组织工程支架、药物缓释载体和生物传感器等生物医学领域具有广阔的应用前景。但是,目前丝素蛋白纺织材料的力学性能、持久性等方面还存在一定的劣势,且特异生物功能性表现不佳,如血溶性、细胞粘附、骨整合以及细胞分化引导等方面,在一定程度上限制了丝素蛋白纺织材料在生物医学领域的应用。
   为了扩展丝素蛋白纺织材料在生物医学领域的应用,通常需要在保留其优越固有特性的条件下,对丝素蛋白纺织材料进行功能修饰,增强固有功能或引入新功能。目前,丝素蛋白材料功能修饰的方法主要有四种:内在功能修饰、丝素蛋白纤维表面修饰、丝素蛋白纤维与其他功能纤维混纺修饰、再生丝素蛋白纺丝前直接混合改性处理。经过功能修饰的丝素蛋白材料可有效引导细胞响应与功能表达,增强力学性能,以达到促进伤口愈合和组织器官修复的目的。
   本文重点介绍了近年来不同形态的一维、二维和三维丝素蛋白基纺织材料在生物医学领域的研究进展,对丝素蛋白材料的结构和基本性质进行了介绍,归纳了丝素蛋白纺织材料功能性的修饰方法,并对丝素蛋白基生物医用纺织材料的发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
拜凤姣
王卉
陈晓敏
吴晨星
张克勤
关键词:  丝素蛋白  纺织材料  生物医学  组织工程    
Abstract: Silk fibroin (SF) is a natural protein polymer that can be extracted from B. mori silkworm cocoons. It has been used by the textile industry for thousands of years. With increasing needs for implantable and degradable biomaterials, SF textile material has attracted more and more interests in the biomedical field, due to its excellent biocompatibility, biodegradability, non-immunogenicity and sufficient supply. Moreover, it can be combined with other biomaterials to form biopolymer composites with unique performance. The versatility and sustainability of SF fibers-based biomedical textile material provides new research ideas and solutions for tailoring biomaterials to meet specific biomedical applications via eco-friendly approaches.
The natural SF fiber can be obtained by degumming the cocoons, and after being dissolved, the regenerated SF solution can be obtained. Then, the regenerated SF solution can further prepare the regenerated SF fiber by different molding methods. According to the practical application requirements in the field of biomedicine, SF fibers can be made into one-dimensional, two-dimensional or three-dimensional biomedical textiles by various techniques such as weaving, knitting, non-woven, electrospinning and three-dimensional printing technology, which have broad application prospects in biomedical fields such as tissue engineering, drug delivery and biosensors. However, there are still some disadvantages in the mechanical properties and persistence of SF textile materials, beyond that the specific biofunctionality is not excellent such as blood solubility, cell adhesion, osseointegration and cell differentiation. Therefore, the application of silk fibroin textile materials in the biomedical field is limited to some extent.
In order to expand the application of SF textile materials in the biomedical field, it is usually necessary to enhance the inherent function or introduce new functions of SF textile materials through functional modification while retaining its intrinsic properties. At present, there are four main methods for functional modification of SF materials, including intrinsic functional modification, surface modification of SF fiber, blending modification with other functional fiber, directly mixing before regenerated SF solution spinning. The functionally modified SF materials can effectively guide cell response and functional expression, enhance mechanical properties, and achieve the purpose of promoting wound healing and tissue organ repair.
This paper mainly reviews the recent advances in the development of one-dimensional, two-dimensional and three-dimensional SF-based textile materials in the biomedical fields. And the structure and basic properties of SF materials are introduced, the functional modification methods of SF-based textile materials are summarized. Besides, the future development tendency of SF-based textile materials is also forecasted.
Key words:  silk fibroin    textile materials    biomedical    tissue engineering
                    发布日期:  2020-04-10
ZTFLH:  TS102.3  
基金资助: 国家重点研发计划项目(2016YFC1100100);江苏省自然科学基金(BK20161253);江苏省南通市科技项目计划(GY12017008);江苏高校优势学科建设工程资助项目
通讯作者:  whui@suda.edu.cn   
作者简介:  拜凤姣,现为苏州大学纺织与服装工程学院硕士研究生,在王卉老师的指导下进行研究。目前主要研究领域为丝素蛋白基生物材料。
王卉,苏州大学纺织与服装工程学院副教授、硕士生导师。2003年7月本科毕业于厦门大学化学化工学院化学系,2009年7月获得厦门大学化学化工学院物理化学专业博士学位,2009年2月—2010年12月在新加坡国立大学进行博士后研究工作。2011年1月回国后,主持国家级、省级等各级项目6项。主要从事微纳米结构仿生生物材料的研究工作。近年来,获得授权国家发明专利3项,获省部级和市厅级科技进步奖各一项,发表学术论文20余篇,包括ACS Applied Materials & Interfaces、Chemical Communications、Small、Soft Matter、Materials Science and Enginee-ring C等。
张克勤,男,苏州大学特聘教授、博士生导师。2010年入选国家“千人计划”,法国“创新人才”计划, 江苏省高层次创新创业人才计划,2011年江苏省“333”工程第二层次培养对象,2013年江苏省科技创新团队领军人才。美国物理学会终身会员,美国材料学会、新加坡材料学会会员,中国功能材料学会理事。主要研究方向为高性能纤维材料、新型功能纤维材料、生物质纤维和生物医用材料及其跨领域应用。近年来,在Nature、Physical Review Letters、Advanced Materials、ACS Nano、Biomaterials、Small等学术期刊发表论文90余篇;撰写专著章节3部;申请专利50余项,其中授权20余项。
引用本文:    
拜凤姣, 王卉, 陈晓敏, 吴晨星, 张克勤. 丝素蛋白基纺织材料及其在生物医学领域的应用[J]. 材料导报, 2020, 34(7): 7154-7160.
BAI Fengjiao, WANG Hui, CHEN Xiaomin, WU Chenxing, ZHANG Keqin. Silk Fibroin-based Textile Materials and Their Application in Biomedical Field. Materials Reports, 2020, 34(7): 7154-7160.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040294  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7154
1 Wang L, Guan G P, Wang F J, et al. Journal of Textile Research, 2016, 37(2), 133(in Chinese).
王璐, 关国平, 王富军, 等. 纺织学报, 2016, 37(2), 133.
2 Vepari C, Kaplan D L. Progress in Polymer Science, 2007, 32(8-9), 991.
3 Huang W W, Ling S J, Li C M, et al. Chemical Society Reviews, 2018, 47(17), 6486.
4 Melke J, Midha S, Ghosh S, et al. Acta Biomaterialia, 2015, 31, 1.
5 Omenetto F G, Kaplan D L. Science, 2010, 329, 528.
6 Rockwood D N, Preda R C, Kaplan D L, et al. Nature Protocols, 2011, 6(10), 1612.
7 Shang L R, Yu Y R, Zhao Y N, et al. ACS Nano, 2019, 13, 2749.
8 Aytemiz D, Sakiyama W, Suzuki Y, et al. Advanced Healthcare Mate-rials, 2013, 2, 361.
9 Altman G H, Horan R L, Kaplan D L, et al. Biomaterials, 2002, 23, 4131.
10 Koh L, Cheng Y, Teng C, et al. Progress in Polymer Science, 2015, 46, 86.
11 Zhou C Z, Confalonieri F, Jacquet M, et al. Proteins: Structure, Function, and Bioinformatics, 2001, 44(2), 119.
12 Tanaka K, Inoue S, Mizuno S. Insect Biochemistry and Molecular Biology,1999, 29(3), 269.
13 Xu Z P, Shi L Y, Zhu L J, et al. Materials Science & Engineering C, 2019, 95, 302.
14 Tansil N C, Li Y, Teng C P, et al. Advanced Materials, 2011, 23, 1463.
15 Elahi M F, Guan G P, Wang L, et al. Langmuir, 2015, 31(8), 2517.
16 Yang X Y, Wang L, Guan G P, et al. Journal of Biomaterials Applications, 2014, 28(5), 676.
17 Du J, Zhu T H, Chen S H, et al. Applied Surface Science, 2019, 447, 269.
18 Baygar T, Sarac N, Karaca I R, et al. Bioorganic Chemistry, 2019, 86, 254.
19 Fan J B, Sun L G, Fan H B, et al. Journal of Materials Chemistry B, 2017, 5, 7035.
20 Chen J S, Altman G H, Kaplan D L, et al. Journal of Biomedical Mate-rials Research Part A, 2003, 67A (2), 559.
21 Jayasree A, Thankappan S K, Chen J, et al. ACS Biomaterials-Science & Engineering, 2019, 5, 1476.
22 Viju S, Thilagavathi G. Fibers and Polymers, 2012, 13(6), 782.
23 Francis N K, Pawar H S, Dhara S, et al. ACS Biomaterials-Science & Engineering, 2016, 2, 188.
24 Zhi Y, Jiang J, Zhang P, et al. Artificial Organs, 2018, 43(6), 1.
25 Farokhi M, Mottaghitalab F, Kaplan D L, et al. Trends in Biotechnology, 2018, 36(9), 907.
26 Kanokpanont S, Damrongsakkul S, Ratanavaraporn J, et al. International Journal of Biological Macromolecules, 2013, 55, 88.
27 Zhang W, Li Y, Jiang D M, et al. ACS Biomaterials-Science & Enginee-ring, 2018, 4, 2067.
28 Cheng G, Chen J J, Wang Q, et al. Nano Research, 2018, 11(7), 3658.
29 Enomoto S, Sumi M, Kajimoto K, et al. Journal of Vascular Surgery, 2010, 51, 155.
30 Zhang W J, Liu W, Cao Y L, et al. Journal of Cellular and Molecular Medicine, 2007, 11(5), 945.
31 Cheng G, Davoudi Z, Deng H B, et al. ACS Biomaterials-Science & Engineering, 2018, 4, 2704.
32 Sultan M T, Moon B M, Park C H, et al. Materials Science & Enginee-ring C, 2019, 97, 55.
33 Algarrahi K, Franck D, Mauney J R, et al. Biomaterials, 2015, 53, 149.
34 Liu H F, Ding X L, Fan Y B, et al. Macromolecular Bioscience, 2013, 13, 755.
35 Yin A L, Li J K, Li D W, et al. Colloids and Surfaces B: Biointerfaces, 2014, 120, 47.
36 Ribeiro V P, Silva-Correia J, Oliveira A L, et al. Biomaterials, 2017, 123, 92.
37 Wang T T, Wang H, Zhang K Q, et al. Modern Chemical Industry, 2018, 38(11), 44(in Chinese).
王彤彤, 王卉, 张克勤. 现代化工, 2018, 38(11), 44.
38 Sanskrita D, Pati F, Choi Y J, et al. Acta Biomaterialia, 2015, 11, 233.
39 Schacht K, Jngst T, Schweinlin M, et al. Angewandte Chemie, 2015, 54, 2816.
40 Zheng Z Z, Wang X Q, Kaplan D L, et al. Advanced Healthcare Mate-rials, 2018,7, 1701026.
[1] 杨珏莹, 陈煜, 赵琳, 张子涵, 杨威, 刘媛, 彭克林, 王雅伦. 基于动态可逆非共价体系的自愈合水凝胶构建方法研究进展[J]. 材料导报, 2020, 34(5): 5133-5141.
[2] 石敏, 陶思洁, 李丹, 王鑫, 徐水, 朱勇. 面向组织工程应用的再生丝素/海藻酸钙海绵:制备、表征及体内、体外性能研究[J]. 材料导报, 2020, 34(4): 4158-4165.
[3] 郭雨晴, 张菁, 李颂. 层层自组装技术在组织工程领域的研究进展[J]. 材料导报, 2019, 33(Z2): 538-541.
[4] 申琦, 余森, 牛金龙, 汶斌斌, 刘辉, 于振涛. 选区激光熔化制备镁基材料研究进展[J]. 材料导报, 2019, 33(z1): 278-282.
[5] 晋艳茹, 贾庆明, 陕绍云. 羟基磷灰石/纤维素复合材料在骨组织工程中的研究进展[J]. 材料导报, 2019, 33(23): 4008-4015.
[6] 李进, 赵梓年, 李征征, 薛松, 郑泽邻. 自愈合水凝胶的合成机理及生物医学应用[J]. 材料导报, 2019, 33(19): 3328-3335.
[7] 徐翔宇, 李弘坤, 詹达, 刘向阳. PEDOT∶PSS掺杂丝素蛋白复合薄膜的半导体性能[J]. 材料导报, 2019, 33(10): 1734-1737.
[8] 钟红荣, 张岩, 包红, 方艳, 吴婷芳, 朱勇, 张小宁, 徐水. 丝素/明胶/壳聚糖支架材料的构建及表征[J]. 材料导报, 2018, 32(22): 3954-3960.
[9] 马艳,李智,冉瑞龙,李康. 蚕丝在生物医用材料领域的应用研究[J]. 《材料导报》期刊社, 2018, 32(1): 86-92.
[10] 王光荣, 高颀, 刘继雄, 杨奇, 王鼎春, 姚锐, 廖松义, 郑峰. β钛合金成分设计:理论、方法、实践[J]. 《材料导报》期刊社, 2017, 31(3): 44-51.
[11] 闫鹏, 艾凡荣, 严喜鸾, 刘东雷. 碳量子点的生物应用:成像、载药与毒性*[J]. 《材料导报》期刊社, 2017, 31(19): 35-42.
[12] 胡建新, 李凤清, 周雪琴, 刘东志, 汪天洋, 李巍. 卟啉-多肽超分子组装体系的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 128-137.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed