Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 35-42    https://doi.org/10.11896/j.issn.1005-023X.2017.019.005
  材料综述 |
碳量子点的生物应用:成像、载药与毒性*
闫鹏1, 艾凡荣1,2, 严喜鸾2, 刘东雷1
1 南昌大学机电工程学院,南昌 330031;
2 南昌大学转化医学研究院,南昌330088
Biological Applications of Carbon Quantum Dots:Bioimaging, Drug Delivery and Toxicity
YAN Peng1, AI Fanrong1,2, YAN Xiluan2, LIU Donglei1
1 School of Mechanic &Electronic Engineering,Nanchang University,Nanchang 330031;
2 Institute of Translational Medicine, Nanchang University, Nanchang 330088
下载:  全 文 ( PDF ) ( 3235KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳量子点作为一种新型的纳米材料,具有荧光性能优异、尺寸小、毒性低等诸多优势,因而具有良好的应用前景,尤其在生物医学领域有突出的应用价值,近年来引起了科研者们的广泛关注。在介绍碳量子点光学性质的基础上,重点综述了碳量子点在生物成像、诊疗剂应用及碳量子点生物毒性等方面的最新研究进展,并探讨了碳量子点未来的发展方向和前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫鹏
艾凡荣
严喜鸾
刘东雷
关键词:  碳量子点  生物医学  生物成像  诊疗剂  生物毒性    
Abstract: As a new type of nanomaterials, carbon quantum dots has attracted much attention in the past decade. With its advantages of excellent fluorescence properties, ultra-small size and low toxicity, carbon quantum dots show a promising application in various areas, especially in biomedicine. Based on an introduction about optical properties of carbon quantum dots this paper summarizes the, latest researches on carbon quantum dots for bioimaging and theranostic applications. The biotoxicity and future development prospects of carbon quantum dots are discussed as well.
Key words:  carbon quantum dots    biomedicine    bioimaging    theranostic    biotoxicity
               出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  TB321  
基金资助: *国家自然科学基金(51102131;81102289;31660491);江西省科技支撑计划项目(20151BBE50033);江西省自然科学基金(20142BAB216033;20132BAB205106)
作者简介:  闫鹏:男,1994年生,硕士研究生,主要从事纳米材料的研究 艾凡荣:通讯作者,男,1982年生,博士,副教授,主要从事生物材料及纳米材料的研究 E-mail:afr3755875@126.com
引用本文:    
闫鹏, 艾凡荣, 严喜鸾, 刘东雷. 碳量子点的生物应用:成像、载药与毒性*[J]. 《材料导报》期刊社, 2017, 31(19): 35-42.
YAN Peng, AI Fanrong, YAN Xiluan, LIU Donglei. Biological Applications of Carbon Quantum Dots:Bioimaging, Drug Delivery and Toxicity. Materials Reports, 2017, 31(19): 35-42.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.005  或          http://www.mater-rep.com/CN/Y2017/V31/I19/35
1 Che W Y, Liu C J, Yang K, et al. Research progress in preparation, property and applications of fluoresent carbon dots[J]. Acta Mater Compos Sin,2016,33(3):431(in Chinese).
车望远, 刘长军, 杨焜, 等. 荧光碳点的制备和性质及其应用研究进展[J]. 复合材料学报,2016,33(3):431.
2 Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc,2004,126(40):12736.
3 Wang W, Cheng L, Liu W G. Biological applications of carbon dots[J]. Sci China Chem,2014,57(4):522.
4 Zhou R Q, Lu H, Chen J H, et al. Synthesis, characterization and application of carbon quantum dots[J].Prog Pharmaceut Sci,2013,37(1):24(in Chinese).
周瑞琪, 吕华, 陈佳慧, 等. 碳量子点的合成, 表征及应用[J]. 药学进展,2013,37(1):24.
5 Tian R X. The surface groups regulation and properties research of carbon quantum dots[D]. Taiyuan: North University of China,2014(in Chinese).
田瑞雪. 碳量子点表面基团调控及性能的研究[D]. 太原: 中北大学,2014.
6 Zhang Y Q. Properties adjustment and applications of carbon quantum dots[D]. Wenzhou: Wenzhou University, 2013(in Chinese).
章燕清. 碳量子点的性能调控与应用[D]. 温州: 温州大学,2013.
7 Qiao Z A, Wang Y, Gao Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation[J]. Chem Commun,2010,46(46):8812.
8 Zhang P, Li W, Zhai X, et al. A facile and versatile approach to biocompatible “fluorescent polymers” from polymerizable carbon na-nodots[J]. Chem Commun,2012,48(84):10431.
9 Lin Z, Xue W, Chen H, et al. Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing[J]. Analyt Chem,2011,83(21):8245.
10 Huang Q, Hu S, Zhang H, et al. Carbon dots and chitosan compo-site film based biosensor for the sensitive and selective determination of dopamine[J]. Analyst,2013,138(18):5417.
11 Liu J H, Huang X Z, Dong Y Y. Fluorescent carbon dots for biolo-gical imaging: Preparation, application,pharmacokinetics and toxicity[J]. J Southwest University for Nationalities:Nat Sci Ed,2014, 40(6):818(in Chinese).
刘佳蕙, 黄旭泽, 董益阳. 荧光碳量子点的合成与生物成像应用及生物安全性研究进展[J]. 西南民族大学学报:自然科学版,2014,40(6):818.
12 Luo P G, Sahu S, Yang S T, et al. Carbon “quantum” dots for optical bioimaging[J]. J Mater Chem B,2013,1(16):2116.
13 Li H, Kang Z, Liu Y, et al. Carbon nanodots: Synthesis, properties and applications[J]. J Mater Chem,2012,22(46):24230.
14 Baker S N, Baker G A. Luminescent carbon nanodots: Emergent nanolights[J]. Angew Chem Int Ed,2010, 49(38):6726.
15 da Silva J C G E, Gonçalves H M R. Analytical and bioanalytical applications of carbon dots[J]. TrAC Trends Analyt Chem,2011,30(8):1327.
16 Wang X, Cao L, Lu F, et al. Photoinduced electron transfers with carbon dots[J]. Chem Commun, 2009,25:3774.
17 Cao L, Wang X, Meziani M J, et al. Carbon dots for multiphoton bioimaging[J]. J Am Chem Soc,2007,129(37):11318.
18 Yang Y, Cui J, Zheng M, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan[J]. Chem Commun,2012,48(3):380.
19 Qiu Y Q, Cai J Y. Development of quantum dots for cellular and in vivo animals imaging[J]. Mater Rev:Rev, 2012,26(1):16(in Chinese).
邱月琴, 蔡继业. 量子点在细胞以及体内生物中成像的研究进展[J]. 材料导报:综述篇,2012,26(1):16.
20 Yang S T, Cao L, Luo P G, et al. Carbon dots for optical imaging in vivo[J]. J Am Chem Soc,2009,131(32):11308.
21 Li N, et al. Biodistribution study of carbogenic dots in cells and in vivo for optical imaging[J]. J Nanopart Res,2012,14(10):1177.
22 Zhang M, Ju H, Zhang L, et al. Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging[J]. Int J Nanomedicine,2015,10:6943.
23 Fowley C, Nomikou N, et al. Extending the tissue penetration capability of conventional photosensitisers: A carbon quantum dot-protoporphyrin Ⅸ conjugate for use in two-photon excited photodynamic therapy[J]. Chem Commun,2013,49(79):8934.
24 Huang P, Lin J, Wang X, et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy[J]. Adv Mater,2012,24(37):5104.
25 Zhou L, Li Z, Liu Z, et al. Luminescent carbon dot-gated nanovehicles for pH-triggered intracellular controlled release and imaging[J]. Langmuir,2013,29(21):6396.
26 Lai C W, Hsiao Y H, Peng Y K, et al. Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release[J]. J Mater Chem,2012,22(29):14403.
27 Anilkumar P, Wang X, Cao L, et al. Toward quantitatively fluorescent carbon-based “quantum” dots[J]. Nanoscale,2011,3(5):2023.
28 Hsu P C, Chang H T. Synthesis of high-quality carbon nanodots from hydrophilic compounds: Role of functional groups[J]. Chem Commun,2012,48(33):3984.
29 Jaiswal A, Ghosh S S, Chattopadhyay A. One step synthesis of C-dots by microwave mediated caramelization of poly (ethylene glycol)[J]. Chem Commun,2012,48(3):407.
30 Wang X L. Explore the photoluminescence mechenism of carbon quantum dots based on the hydrathermal synthesis and gradiend se-paration method[D]. Beijing: Beijing University of Chemical Technology,2015(in Chinese).
王晓磊. 基于水热合成和梯度分离法探究碳量子点的发光机理[D]. 北京: 北京化工大学,2015.
31 Zhu S, Song Y, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective[J]. Nano Res,2015,8(2):355.
32 Sun Y P, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. J Am Chem Soc,2006,128(24):7756.
33 Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot[J]. Angew Chem Int Ed,2007, 46(34):6473.
34 Feng L, Zhao A, et al. Lighting up left-handed Z-DNA: Photoluminescent carbon dots induce DNA B to Z transition and perform DNA logic operations[J]. Nucleic Acids Res,2013,41(16):7987.
35 Sheng Y Z. Preparation of water-soluble carbon dots via hydrothermal method and their fluorescence properties and applications[D]. Lanzhou: Lanzhou University,2015(in Chinese).
盛英卓. 水热法制备水溶性碳点及其荧光性能与应用研究[D]. 兰州: 兰州大学,2015.
36 Lu Q. The preparation of carbon dots and its applications in environmental and biological analysis[D]. Zhenjiang: Jiangsu University,2016(in Chinese).
卢庆. 碳量子点的制备及其在环境与生物分析中的应用[D]. 镇江: 江苏大学,2016.
37 Qi G Q, Luo Z M. Preparation and application of carbon quantum dots[J]. J Nanjing University of Posts and Telecommunications:Nat Sci Ed,2015,35(5):122(in Chinese).
漆光骎, 罗志敏. 碳量子点的制备及其应用研究[J]. 南京邮电大学学报:自然科学版,2015,35(5):122.
38 Sun Y P, Wang X, Lu F, et al. Doped carbon nanoparticles as a new platform for highly photoluminescent dots[J]. J Phys Chem C,2008,112(47):18295.
39 Eda G, Chhowalla M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics[J]. Adv Mater,2010,22(22):2392.
40 Chen P C, Chen Y N, Hsu P C, et al. Photoluminescent organosilane-functionalized carbon dots as temperature probes[J]. Chem Commun,2013,49(16):1639.
41 Pan L, Sun S, et al. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing[J]. Adv Mater,2015,27(47):7782.
42 Zhou N. Cellular behavior study and neuroanatomical tracing application of carbon dots[D]. Changchun:Jilin University,2015(in Chinese).
周南. 碳点的细胞行为学研究与神经示踪应用[D]. 长春: 吉林大学,2015.
43 Wu Z L, Zhang P, Gao M X, et al. One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk-natural proteins[J]. J Mater Chem B,2013, 1(22):2868.
44 Tan M, Zhang L, Tang R, et al. Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source[J]. Talanta,2013,115:950.
45 Wang F, Pang S, Wang L, et al. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents[J]. Chem Mater,2010,22(16):4528.
46 Li H, He X, Liu Y, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties[J]. Carbon,2011,49(2):605.
47 Zhao Q L, Zhang Z L, Huang B H, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite[J]. Chem Commun,2008,41:5116.
48 Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates[J]. Chem Mater,2009,21(23):5563.
49 Jia X, Li J, Wang E. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence[J]. Nanoscale,2012,4(18):5572.
50 Zong J, Zhu Y, Yang X, et al. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors[J]. Chem Commun,2011,47(2):764.
51 Zhu S, Zhang J, Liu X, et al. Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission[J]. RSC Adv,2012,2(7):2717.
52 Shen J, et al. Facile preparation and upconversion luminescence of graphene quantum dots[J]. Chem Commun,2011,47(9):2580.
53 Li F. Synthesis of highly luminescent carbon quantum dots and their applications[D]. Beijing:Academy of Military Medical Sciences,2015(in Chinese).
李钒. 高荧光碳量子点的制备及其应用研究[D]. 北京:中国人民解放军军事医学科学院,2015.
54 Li H, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angew Chem Int Ed,2010,49(26):4430.
55 Sahu S, Behera B, Maiti T K, et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents[J]. Chem Commun,2012,48(70):8835.
56 Wei J, Shen J, Zhang X, et al. Simple one-step synthesis of water-soluble fluorescent carbon dots derived from paper ash[J]. RSC Adv,2013,3(32):13119.
57 Xu Y, Wu M, et al. Nitrogen-doped carbon dots: A facile and ge-neral preparation method, photoluminescence investigation, and imaging ppplications[J]. Chemistry—A Eur J,2013,19(7):2276.
58 Wang F, et al. Highly luminescent organosilane-functionalized carbon dots[J]. Adv Funct Mater,2011,21(6):1027.
59 Li Q, Ohulchanskyy T Y, Liu R, et al. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro[J]. J Phys Chem C,2010,114(28):12062.
60 Liu J H, Cao L, et al. Carbon “quantum” dots for fluorescence labeling of cells[J]. ACS Appl Mater Interfaces,2015,7(34):19439.
61 Kang Y F, Li Y H, Fang Y W, et al. Carbon quantum dots for zebrafish fluorescence imaging[J]. Sci Rep,2015, 5:11835.
62 Li L B, Li W M, Xiang L H, et al. Photodynamic therapy: Clinical research and application in china[J]. Chin J Laser Medicine Surgery,2012,21(5):278(in Chinese).
李黎波, 李文敏, 项蕾红, 等. 光动力疗法在中国的应用与临床研究[J]. 中国激光医学杂志,2012,21(5):278.
63 Chen Y, Li W W, Zhou J J, et al. Molecular mechanism of photodynamic therapy[J]. J Central South University:Medical Sci Ed,2014,39(1):102(in Chinese).
陈勇, 李婉婉, 周江蛟,等. 光动力疗法分子机制研究进展[J]. 中南大学学报:医学版,2014,39(1):102.
64 Wang Q, Huang X, Long Y, et al. Hollow luminescent carbon dots for drug delivery[J]. Carbon,2013, 59(4):192.
65 Liu C, Zhang P, Zhai X, et al. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence[J]. Biomaterials,2012,33(13):3604.
66 Song Y, Feng D, Shi W, et al. Parallel comparative studies on the toxic effects of unmodified CdTe quantum dots, gold nanoparticles, and carbon nanodots on live cells as well as green gram sprouts[J]. Talanta,2013,116:237.
67 Huang X, Zhang F, Zhu L, et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dot[J]. ACS Nano,2013,7(7):5684.
68 Ray S C, Saha A, Jana N R, et al. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application[J]. J Phys Chem C,2009,113(43):18546.
69 Yang S T, Wang X, Wang H, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. J Phys Chem C,2009,113(42):18110.
70 Wang K, Gao Z, Gao G, et al. Systematic safety evaluation on photoluminescent carbon dots[J]. Nanoscale Res Lett,2013,8(1):122.
71 Gao Z, et al. Carbon dots: A safe nanoscale substance for the immunologic system of mice[J]. Nanoscale Res Lett,2013,8(1):276.
72 Duncan R. The dawning era of polymer therapeutics[J]. Nature Rev Drug Discovery,2003,2(5):347.
[1] 申琦, 余森, 牛金龙, 汶斌斌, 刘辉, 于振涛. 选区激光熔化制备镁基材料研究进展[J]. 材料导报, 2019, 33(z1): 278-282.
[2] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[3] 刘文, 李婷婷, 张冰, 张荣, 刁海鹏, 常宏宏, 魏文珑. 基于绿色天然物质合成荧光碳点及其性质和应用综述[J]. 材料导报, 2019, 33(3): 402-409.
[4] 赵秋丽, 卞洁鹏, 杨庆浩, 彭龙贵, 王志华, 后振中, 李颖. 聚集诱导发红光材料在生物成像领域的应用[J]. 材料导报, 2019, 33(3): 522-535.
[5] 冯爱玲,徐榕,王彦妮,张亚妮,林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[6] 王春来,李钒,杨焜,刘长军,田丰. 碳量子点-二氧化钛复合光催化剂的研究进展[J]. 材料导报, 2018, 32(19): 3348-3357.
[7] 马艳,李智,冉瑞龙,李康. 蚕丝在生物医用材料领域的应用研究[J]. 《材料导报》期刊社, 2018, 32(1): 86-92.
[8] 王光荣, 高颀, 刘继雄, 杨奇, 王鼎春, 姚锐, 廖松义, 郑峰. β钛合金成分设计:理论、方法、实践[J]. 《材料导报》期刊社, 2017, 31(3): 44-51.
[9] 张研, 刘康恺, 孟龙月. 荧光碳量子点的制备及其在生物医用领域的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 126-132.
[10] 胡建新, 李凤清, 周雪琴, 刘东志, 汪天洋, 李巍. 卟啉-多肽超分子组装体系的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 128-137.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed