Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3348-3357    https://doi.org/10.11896/j.issn.1005-023X.2018.19.009
  无机非金属及其复合材料 |
碳量子点-二氧化钛复合光催化剂的研究进展
王春来,李钒,杨焜,刘长军,田丰
军事医学科学院卫生装备研究所,天津 300161
Materials Research Progress on Carbon Quantum Dots TitaniumDioxide Composite Photocatalysts
WANG Chunlai, LI Fan, YANG Kun, LIU Changjun, TIAN Feng
Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161
下载:  全 文 ( PDF ) ( 2224KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着社会的快速发展,环境污染与能源短缺问题日益突出。光催化技术可以利用太阳能降解水体或大气中的污染物,也可用于催化制氢等,是解决环境污染与能源短缺问题最有效的手段之一。二氧化钛(TiO2)具有光催化活性高、化学性质稳定、价廉、无毒等优点,是当前应用最为广泛的光催化剂。然而,TiO2的带隙过宽且光生电子与空穴易再结合,因而在光催化领域的应用受到限制。在过去的10多年中,研究者们发展出了一系列方法尝试提高TiO2的光催化活性,包括量子点敏化、有机染料敏化、TiO2晶型与形貌的调节、表面贵金属沉积、过渡金属离子掺杂与非金属离子掺杂等。
量子点敏化是将TiO2与量子点复合,从而调节TiO2的能带宽度,拓宽对光的响应范围。不过,敏化所用的量子点大多含有有毒重金属离子,严重威胁环境与人体健康,这促使许多学者致力于找寻更安全无毒的荧光纳米材料。碳量子点(CDs或CQDs)是一种新型的荧光碳纳米材料,由sp2/sp3杂化碳原子组成,表面具有各种官能团。与传统的量子点相比,CDs拥有原料来源广泛、理化性能稳定、无毒、生物相容性好、易于功能化修饰、抗光漂白等优点。此外,CDs还具有光诱导电子转移能力、光敏性以及荧光上转换效应等特性,在光电化学与光催化领域具有良好的应用潜力。将CDs与TiO2复合制成CDs-TiO2光催化剂,一方面材料毒性低,克服了传统量子点毒性高的缺点;另一方面能有效抑制光生电子与空穴的再结合,增强对紫外光的吸收并且拓展对可见光甚至近红外光的吸收,从而提高材料的光催化活性。
当前研究主要从调控TiO2与调控CDs两方面入手来提高CDs-TiO2光催化剂的活性,其中前者主要包括TiO2晶型和晶面的调节、TiO2的形貌调控与TiO2的杂化改性;CDs的调控主要包括CDs的杂化改性、CDs粒径与负载量的调节。本文基于CDs-TiO2复合光催化剂当前的研究进展,分析了可能的光催化机理,重点阐述了针对以上几种调控手段的研究结果,最后介绍了CDs-TiO2的制备方法与当前应用现状,并对未来的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王春来
李钒
杨焜
刘长军
田丰
关键词:  碳量子点  二氧化钛  光催化剂    
Abstract: With the photocatalytic technology, people can make further progress in tackling the potential threat of environmental pollution and energy shortage, by effectively utilize solar energy to degrade pollutants in water or atmosphere and to generate hydrogen via photocatalyzed water splitting reactions. Titanium dioxide (TiO2), currently the most widely used photocatalyst with excellent photocatalytic activity, high chemical stability, low price and non-toxicity, suffers great limitation in application due to its wide band gap and rapid recombination of electrons and holes. Over the past decade or more, researchers have developed a series of methods to improve the photocatalytic activity of TiO2, including adjusting TiO2 crystal and morphology, sensitizing TiO2 using quantum dot or organic dye, depositing precious metal on catalyst surface, doping transition metal ion or non-metal ion.
The sensitization of TiO2 with quantum dot refers to the combination of TiO2 and quantum dots, which can adjust the band width of TiO2, broaden the photoresponse range of the photocatalyst. However, the traditional quantum dots mostly contain toxic heavy metal ions, and will no doubt be a hazard to environment and human health. This urges intensive research efforts to seek non-toxic fluorescent nanomaterials, among which carbon quantum dots (CDs or CQDs) have displayed impressive potential and representativeness. CDs, consisting of sp2/sp3 hybridized carbon atoms and holding various surface functional groups, enjoy the advantages of abundant ingredient, stable physical and chemical performance, non-toxicity, good biocompatibility, ease of functionalization, and excellent resistance to photobleaching, compared with the traditional quantum dots. In addition, CDs possess photoinduced electron transfer character and photosensitivity, and part of them display excellent up-conversion photoluminescence. By integrating CDs and TiO2, we can obtain CDs-TiO2 composite photocatalyst which surpasses the traditional hazardous quantum dots by virtue of its low toxicity. And on the other hand, it has an enhanced ultraviolet light absorption, and also extended visible light absorption and near-infrared light absorption, and moreover, can inhibit the recombination of photogenerated electrons and holes, thus effectively promoting the photocatalytic performance and having broad application prospects in the field of photocatalysis.
Previous works intend to improve the photocatalytic activity of CDs-TiO2 photocatalysts mainly from the prospectives of regulating TiO2 and regulating CDs. The former mainly includes the adjustment of TiO2 crystal and crystal surface, the control of TiO2 morphology and the hybridization of TiO2. The latter mainly includes the hybridization of CDs, the change of the particle size and loading capacity of CDs. This review analyzes the hypothesized photocatalytic mechanism of CDs-TiO2 composite photocatalysts, and describes the research results with respect to the above mentioned regulation methods. Finally, it briefly discusses the preparation and application of CDs-TiO2 as well as the future development trend.
Key words:  carbon quantum dots    titanium dioxide    photocatalyst
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(51502345);天津市自然科学基金(16JCQNJC03100)
作者简介:  男,1991年生,博士研究生,主要从事光催化材料研究 E-mail:wangchunlai6789@163.com ;李钒:通信作者,男,1981年生,副研究员,主要从事功能高分子材料研究 E-mail:vanadium_1981@163.com; 田丰:通信作者,男,1964年生,研究员,主要从事功能高分子材料研究 E-mail:tianfeng62037@163.com
引用本文:    
王春来,李钒,杨焜,刘长军,田丰. 碳量子点-二氧化钛复合光催化剂的研究进展[J]. 材料导报, 2018, 32(19): 3348-3357.
WANG Chunlai, LI Fan, YANG Kun, LIU Changjun, TIAN Feng. Materials Research Progress on Carbon Quantum Dots TitaniumDioxide Composite Photocatalysts. Materials Reports, 2018, 32(19): 3348-3357.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.009  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3348
1 Lee K M, Lai C W, Ngai K S, et al. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review[J].Water Research,2016,88:428.
2 Zhang J, Xiao G, Xiao F X, et al. Revisiting one-dimensional TiO2 based hybrid heterostructures for heterogeneous photocatalysis: A critical review[J].Materials Chemistry Frontiers,2017,1:231.
3 Bhanvase B A, Shende T P, Sonawane S H. A review on graphene-TiO2 and doped graphene-TiO2 nanocomposite photocatalyst for water and wastewater treatment[J].Environmental Technology Reviews,2017,6(1):1.
4 Yun H J, Paik T, Diroll B, et al. Nanocrystal size-dependent efficiency of quantum dot sensitized solar cells in the strongly coupled CdSe nanocrystals/TiO2 system[J].ACS Applied Materials and Interfaces,2016,8(23):14692.
5 Sudhakar C, Selvankumar T, Selvam K, et al. Bauhinia purpurea L. flower mediated dye used as sensitizers for TiO2 based dye-sensitized solar cells[J].International Journal of Advanced Science and Engineering,2016,2(4):209.
6 Tang Y, Hao R, Fu Y, et al. Carbon quantum dot/mixed crystal TiO2 composites via a hydrogenation process: An efficient photoca-talyst for the hydrogen evolution reaction[J].RSC Advances,2016,6(99):96803.
7 Du G, Yuan J, Zhu C. Hierarchical nanostructures of Ag3PO4 on TiO2 nanofibers with enhanced photocatalytic activity for the degradation of rhodamine B[J].Journal of Materials Science: Materials in Electronics,2017,28(10):7307.
8 Choi Y, Kim H, Moon G, et al. Boosting up the low catalytic activity of silver for H2 production on Ag/TiO2 photocatalyst: Thiocyanate as a selective modifier[J].ACS Catalysis,2016,6(2):821.
9 Xu M, Wang Y, Geng J, et al. Photodecomposition of NOx on Ag/TiO2 composite catalysts in a gas phase reactor[J].Chemical Engineering Journal,2017,307:181.
10 Du J, Wang H, Chen H, et al. Synthesis and enhanced photocataly-tic activity of black porous Zr-doped TiO2 monoliths[J].Nano,2016,11(6):1650068.
11 Chen X, Xie Z, Liang Y, et al. Hybridizing TiO2 with nitrogen-doped carbon: A new route to a highly visible light-active photocatalyst[J].Chemistry Select,2017,2(4):1565.
12 Xu X, Song W. Enhanced H2 production activity under solar irradiation over N-doped TiO2 prepared using pyridine as a precursor: A typical sample of N-doped TiO2 series[J].Materials Technology,2017,32(1):52.
13 Benítez-martínez S, Valcárcel M. Graphene quantum dots in analytical science[J].TrAC Trends in Analytical Chemistry,2015,72:93.
14 Yu H, Shi R, Zhao Y, et al. Smart utilization of carbon dots in semi-conductor photocatalysis[J].Advanced Materials,2016,28(43):9454.
15 Liu Y, Yu Y X, Zhang W D. Carbon quantum dots-doped CdS microspheres with enhanced photocatalytic performance[J].Journal of Alloys and Compounds,2013,569:102.
16 Ming H, Ma Z, Liu Y, et al. Large scale electrochemical synthesis of high quality carbon nanodotsand their photocatalytic property[J].Dalton Transactions,2012,41(31):9526.
17 Cao L, Sahu S, Anilkumar P, et al. Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond[J].Journal of the American Chemical Society,2011,133(13):4754.
18 Li H, Liu R, Lian S, et al. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction[J].Nanoscale,2013,5(8):3289.
19 Li H, Liu R, Liu Y, et al. Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior[J].Journal of Materials Chemistry,2012,22(34):17470.
20 Wang H, Wei Z, Matsui H, et al. Fe3O4/carbon quantum dots hybrid nanoflowers for highly active and recyclable visible-light driven photocatalyst[J].Journal of Materials Chemistry A,2014,2(38):15740.
21 Xie S, Su H, Wei W, et al. Remarkable photoelectrochemical performance of carbon dots sensitized TiO2 under visible light irradiation[J].Journal of Materials Chemistry A,2014,2(39):16365.
22 Huang Z, Fang L, Dong W, et al. Design and fabrication of carbon quantum dots/TiO2 photonic crystal complex with enhanced photocatalytic activity[J].Journal of Nanoscience and Nanotechnology,2014,14(6):4156.
23 Li H, He X, Kang Z, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J].Angewandte Chemie International Edition,2010,49(26):4430.
24 Li H, Zhu Y, Cao H, et al. Preparation and characterization of photocatalytic carbon dots-sensitized electrospun titania nanostructured fibers[J].Materials Research Bulletin,2013,48(2):232.
25 Zhou Q, Zhou J, Zeng M, et al. Photoelectrochemical performance of quantum dot-sensitized TiO2 nanotube arrays: A study of surface modification by atomic layer deposition coating[J].Nanoscale Research Letters,2017,12(1):261.
26 Zhuo S, Shao M, Lee S T. Upconversion and downconversion fluorescent graphene quantum dots: Ultrasonic preparation and photocatalysis[J].ACS Nano,2012,6(2):1059.
27 Pan J, Liu G, Lu G Q M, et al. On the true photoreactivity order of {001},{010}, and {101} facets of anatase TiO2 crystals[J].Angewandte Chemie International Edition,2011,50(9):2133.
28 Maitani M M, Tanaka K, Mochizuki D, et al. Enhancement of photoexcited charge transfer by {001} facet-dominating TiO2 nanoparticles[J].The Journal of Physical Chemistry Letters,2011,2(20):2655.
29 Yu X, Liu J, Yu Y, et al. Preparation and visible light photocataly-tic activity of carbon quantum dots/TiO2 nanosheet composites[J].Carbon,2014,68:718.
30 Xue J, Song F, Yin X W, et al. Cellulose nanocrystal-templated synthesis of mesoporous TiO2 with dominantly exposed (001) facets for efficient catalysis[J].ACS Sustainable Chemistry and Engineering,2017,5(5):3721.
31 Wang W, Ni Y, Xu Z. One-step uniformly hybrid carbon quantum dots with high-reactive TiO2 for photocatalytic application[J].Journal of Alloys and Compounds,2015,622:303.
32 Tian J, Leng Y, Zhao Z, et al. Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation[J].Nano Energy,2015,11:419.
33 Liu R, Li H, Duan L, et al. In situ synthesis and enhanced visible light photocatalytic activity of C-TiO2 microspheres/carbon quantum dots[J].Ceramics International,2017,43(12):8648.
34 Yu H, Zhao Y, Zhou C, et al. Carbon quantum dots/TiO2 compo-sites for efficient photocatalytic hydrogen evolution[J].Journal of Materials Chemistry A,2014,2(10):3344.
35 Pan J, Sheng Y, Zhang J, et al. Preparation of carbon quantum dots/TiO2 nanotubes composites and their visible light catalytic applications[J].Journal of Materials Chemistry A,2014,2(42):18082.
36 Qu A, Xie H, Xu X, et al. High quantum yield graphene quantum dots decorated TiO2 nanotubes for enhancing photocatalytic activity[J].Applied Surface Science,2016,375:230.
37 Zhang Y Q, Ma D K, Zhang Y G, et al. N-doped carbon quantum dots for TiO2-based photocatalysts and dye-sensitized solar cells[J].Nano Energy,2013,2(5):545.
38 Liu J, Zhu W, Yu S, et al. Three dimensional carbogenic dots/TiO2 nanoheterojunctions with enhanced visible light-driven photocatalytic activity[J].Carbon,2014,79:369.
39 Dai Y, Long H, Wang X, et al. Versatile graphene quantum dots with tunable nitrogen doping[J].Particle and Particle Systems Cha-racterization,2014,31(5):597.
40 Safardoust-hojaghan H, Salavati-niasari M. Degradation of methy-lene blue as a pollutant with N-doped graphene quantum dot/titanium dioxide nanocomposite[J].Journal of Cleaner Production,2017,148:31.
41 Qu D, Zheng M, Du P, et al. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts[J].Nanoscale,2013,5(24):12272.
42 Qu D, Sun Z, Zheng M, et al. Three colors emission from S, N co-doped graphene quantum dots for visible light H2 production and bioimaging[J].Advanced Optical Materials,2015,3(3):360.
43 Ma Z, Zhang Y L, Wang L, et al. Bio-inspired photoelectric conversion system based on carbon quantum dot doped dye-semiconductor complex[J].ACS Applied Materials and Interfaces,2013,5(11):5080.
44 Bian J, Huang C, Wang L, et al. Carbon dot loading and TiO2 nanorod length dependence of photoelectrochemical properties in carbon dot/TiO2 nanorod array nanocomposites[J].ACS Applied Materials and Interfaces,2014,6(7):4883.
45 Long R, Casanova D, Fang W H, et al. Donor-acceptor interaction determines the mechanism of photoinduced electron injection from graphene quantum dots into TiO2: π-stacking supersedes covalent bonding[J].Journal of the American Chemical Society,2017,139(7):2619.
46 Miao R, Luo Z, Zhong W, et al. Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst[J].Applied Catalysis B: Environmental,2016,189:26.
47 Chen J, Shu J, Anqi Z, et al. Synthesis of carbon quantum dots/TiO2 nanocomposite for photo-degradation of rhodamine B and cefradine[J].Diamond and Related Materials,2016,70:137.
48 Ke J, Li X, Zhao Q, et al. Upconversion carbon quantum dots as visible light responsive component for efficient enhancement of photocatalytic performance[J].Journal of Colloid and Interface Science,2017,496:425.
49 Li F, Tian F, Liu C, et al. One-step synthesis of nanohybrid carbon dots and TiO2 composites with enhanced ultraviolet light active photocatalysis[J].RSC Advances,2015,5(11):8389.
50 Hou Y, Lu Q, Wang H, et al. One-pot electrochemical synthesis of carbon dots/TiO2 nanocomposites with excellent visible light photocatalytic activity[J].Materials Letters,2016,173:13.
51 Wang J, Gao M, Ho G W. Bidentate-complex-derived TiO2/carbon dot photocatalysts: In situ synthesis, versatile heterostructures, and enhanced H2 evolution[J].Journal of Materials Chemistry A,2014,2(16):5703.
52 Wang J, Ng Y H, Lim Y F, et al. Vegetable-extracted carbon dots and their nanocomposites for enhanced photocatalytic H2 production[J].RSC Advances,2014,4(83):44117.
53 Zhang X, Wang F, Huang H, et al. Carbon quantum dot sensitized TiO2 nanotube arrays for photoelectrochemical hydrogen generation under visible light[J].Nanoscale,2013,5(6):2274.
54 Yu X, Liu R, Zhang G, et al. Carbon quantum dots as novel sensitizers for photoelectrochemical solar hydrogen generation and theirsize-dependent effect[J].Nanotechnology,2013,24(33):335401.
55 Wei J, Li X D, Wang H Z, et al. Nitrogen doped carbon quantum dots/titanium dioxide composites for hydrogen evolution under sunlight[J].Journal of Inorganic Materials,2015,30(9):925(in Chinese).
魏婕,李雪冬,王宏志,等.NCDs/TiO2复合材料的制备及其在太阳光下催化制氢的应用[J].无机材料学报,2015,30(9):925.
56 Saud P S, Pant B, Alam A M, et al. Carbon quantum dots anchored TiO2 nanofibers: Effective photocatalyst for waste water treatment[J].Ceramics International,2015,41(9):11953.
57 Sun M, Ma X, Chen X, et al. A nanocomposite of carbon quantum dots and TiO2 nanotube arrays: Enhancing photoelectrochemical and photocatalytic properties[J].RSC Advances,2014,4(3):1120.
58 Mirtchev P, Henderson E J, Soheilnia N, et al. Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells[J].Journal of Materials Chemistry,2012,22(4):1265.
59 Zhang X, Liu C, Li Z, et al. An easily prepared carbon quantum dots and employment for inverted organic photovoltaic devices[J].Chemical Engineering Journal,2017,315:621.
60 Li H, Shi W, Huang W, et al. Carbon quantum dots/TiOx electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19%[J].Nano Letters,2017,17(4):2328.
61 Jin J, Chen C, Li H, et al. Enhanced performance and photostability of perovskite solar cells by introduction of fluorescent carbon dots[J].ACS Applied Materials and Interfaces,2017,9(16):14518.
62 Ming H, Yan Y, Ming J, et al. Porous TiO2 nanoribbons and TiO2 nanoribbon/carbon dot composites for enhanced Li-ion storage[J].RSC Advances,2014,4(25):12971.
63 Wang F, Zhang Y, Liu Y, et al. Opto-electronic conversion logic behaviour through dynamic modulation of electron/energy transfer states at the TiO2-carbon quantum dot interface[J].Nanoscale,2013,5(5):1831.
64 Le Z, Liu F, Nie P, et al. Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors[J].ACS Nano,2017,11(3):2952.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[3] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[4] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[5] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[6] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[7] 张宇, 王敏, 周鑫, 杨光俊, 柴天煜, 朱彤. Bi2MoO6/BiVO4异质结光催化剂的制备及性能[J]. 材料导报, 2019, 33(10): 1597-1601.
[8] 张 震,冯军宗,姜勇刚,刘 平,张秋华,卫荣辉,陈 翔,冯 坚. 利用离子液体制备无机气凝胶的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1469-1476.
[9] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[10] 郭韵恬, 王汉青. 稀土镧掺杂纳米二氧化钛复合保鲜包装薄膜的研究[J]. 材料导报, 2018, 32(24): 4357-4362.
[11] 马晓宇, 梁雨, 崔素萍, 王志宏, 王亚丽. 稻壳灰制备TiO2-SiO2复合载体脱硝催化材料[J]. 材料导报, 2018, 32(22): 3984-3988.
[12] 郑康, 郑敏, 黄鹏杰, 赵松铭, 沈凯旋. Cu2O/TiO2复合物的制备及抗菌和除氨气性能[J]. 材料导报, 2018, 32(20): 3504-3509.
[13] 李磊,程博闻,康卫民,马晓光,庄旭品. 静电溶液喷射Fe2O3/Al2O3超细纤维负载型光催化剂的制备及催化性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 207-212.
[14] 王杏娟,田阔,樊亚鹏,王浩楠,吴哲. TiO2对连铸三元无氟CaO-SiO2-TiO2渣系特性的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2100-2104.
[15] 吉海燕,范亚敏,吴殿国,费 婷,黄济华,许 晖,李华明. 仿生超疏水聚丙烯/二氧化钛复合薄膜的构筑及性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 101-104.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed