Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3504-3509    https://doi.org/10.11896/j.issn.1005-023X.2018.20.003
  无机非金属及其复合材料 |
Cu2O/TiO2复合物的制备及抗菌和除氨气性能
郑康, 郑敏, 黄鹏杰, 赵松铭, 沈凯旋
苏州大学纺织与服装工程学院,苏州 215006;
Preparation, Antibacterial Properties and Ammonia Removal Performance of Cu2O/TiO2 Composites
ZHENG Kang, ZHENG Min, HUANG Pengjie, ZHAO Songming, SHEN Kaixuan
College of Textile and Clothing Engineering, Soochow University, Suzhou 215006;
下载:  全 文 ( PDF ) ( 3462KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过调控钛酸四丁酯的浓度,制备了两种形貌的Cu2O/TiO2复合物。利用X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、扫描电镜(SEM)和透射电镜(TEM)对样品进行了表征,并将复合材料的抗菌性能和除氨气性能与Cu2O进行了详细比较。结果表明,钛酸四丁酯的浓度由0.04%变为0.12%时,TiO2在Cu2O表面由膜状变为粒状。性能测试结果表明,与纯相Cu2O相比,膜状表面的Cu2O/TiO2复合物的抗菌性能有所提高,而粒状表面的Cu2O/TiO2复合物的抗菌性能略有降低。两种形貌的Cu2O/TiO2复合物对氨气的去除性能均好于纯相Cu2O,但粒状表面的Cu2O/TiO2复合物的除氨气性能优于膜状表面的复合物。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑康
郑敏
黄鹏杰
赵松铭
沈凯旋
关键词:  氧化亚铜  二氧化钛  复合材料  抗菌性能  氨气去除    
Abstract: The Cu2O/TiO2 composites with two different morphologies were synthesized through adjusting the concentration of tetra-n-butyl titanate (TBOT), and were subsequently characterized by means of X-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resultant composites’ antibacterial properties and ammonia removal performances were also determined by the experiment. It has been observed that the membranous TiO2 turns to granuliform on the surface of Cu2O nanoparticles while the TBOT concentration increased from 0.04% to 0.12%. On the other hand, compared with the pure Cu2O, the Cu2O/TiO2 composite with membranous surface exhibited better antibacterial properties, and the antibacterial properties of the sample with granuliform surface slightly reduction. Moreover, compared to pure Cu2O, the Cu2O/TiO2 composites with either membranous or granuliform surface performed more actively in ammonia removal, but the latter had a better removal performance than the former.
Key words:  copper (Ⅰ) oxide    titanium dioxide    composite material    antibacterial property    ammonia removal
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  TB34  
  TQ131  
基金资助: 江苏省产学研前瞻性联合研究项目(BY2016043-01);江苏高校优势学科建设工程资助项目(PAPD)
作者简介:  郑康:男,1992年生,硕士研究生,研究方向为纳米功能材料的制备及其在纺织领域的应用 E-mail:20154215043@stu.suda.edu.cn 郑敏:通信作者,女,1968年生,博士,教授,研究方向为纳米材料制备、功能纺织助剂及特种功能纺织品开发 E-mail:zhengmin@suda.edu.cn
引用本文:    
郑康, 郑敏, 黄鹏杰, 赵松铭, 沈凯旋. Cu2O/TiO2复合物的制备及抗菌和除氨气性能[J]. 材料导报, 2018, 32(20): 3504-3509.
ZHENG Kang, ZHENG Min, HUANG Pengjie, ZHAO Songming, SHEN Kaixuan. Preparation, Antibacterial Properties and Ammonia Removal Performance of Cu2O/TiO2 Composites. Materials Reports, 2018, 32(20): 3504-3509.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.003  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3504
1 Jiang Zhijun, Lian Na. Ammonia pollution of indoor air in Hailun city[J]. Heilongjiang Environmental Journal,2009,33(2):92(in Chinese).
蒋志军,连娜.海伦市居民室内空气中氨污染现状分析[J].黑龙江环境通报,2009,33(2):92.
2 Tang Hong, Pang Yafang, Li Qidong. Adsorption characteristics of modified activated carbon for NH3 and N(CH3)3[J]. Environmental Chemistry,2000,19(5):431(in Chinese).
汤鸿,庞亚芳,李启东.改性活性炭对氨和三甲胺的吸附特性研究[J].环境化学,2000,19(5):431.
3 Han Xu, Wu Hongyu, Dou Wenping, et al. Experimental study on pollutant elimination from indoor air in a new decorated office[J]. HV&AC,2006,36(1):106(in Chinese).
韩旭,吴宏宇,窦文平,等.新装修办公室内空气污染的消除试验[J].暖通空调,2006,36(1):106.
4 Zhang Yiyu, Wang Lu, Campagne C, et al. Fragrant finishing of cotton fabric with lavender oil via β-cyclodextrin technology[J]. Journal of Textile Research,2008,29(9):94(in Chinese).
张艺于,王璐,Campagne C,等.基于β-环糊精包合技术的棉织物熏衣草芳香整理[J].纺织学报,2008,29(9):94.
5 Zhu Ling, Wang Xuezhong, Li Kai, et al. A study of photocatalysis degradation ammonia using immobilized TiO2 photocatalysts [J]. Journal of Ningxia University(Natural Science Edition),2001,22(2):221(in Chinese).
朱玲,王学中,李凯,等.负载型TiO2催化剂上光催化降解NH3的研究[J].宁夏大学学报(自然科学版),2001,22(2):221.
6 Zhang Yang, Li Daorong, Li Pan. Nano-titanium dioxide photocatalytic degradation of formaldehyde,ammonia[J]. Guangdong Chemical Industry,2015,42(1):3(in Chinese).
张洋,李道荣,李盼.纳米二氧化钛光催化降解甲醛、氨气的研究[J].广东化工,2015,42(1):3.
7 Wang Mengye, Sun Lan, Lin Zhiqun, et al. p-n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities[J]. Energy & Environmental Science,2013,6(4):1211.
8 Chu Sheng, Zheng Xinmei, Kong Fei, et al. Architecture of Cu2O@TiO2 core-shell heterojunction and photodegradation for 4-nitrophenol under simulated sunlight irradiation[J]. Materials Chemistry and Physics,2011,129(3):1184.
9 Yin Haoyong, Wang Xulong, Wang Ling, et al. Cu2O/TiO2 heterostructured hollow sphere with enhanced visible light photocatalytic activity[J]. Materials Research Bulletin,2015,72:176.
10 Siripala W, Ivanovskaya A, Jaramillo T F, et al. A Cu2O/TiO2 he-terojunction thin film cathode for photoelectrocatalysis[J]. Solar Energy Materials and Solar Cells,2003,77(3):229.
11 Han Chenghui, Li Zhiyu, Shen Jianyi. Photocatalytic degradation of dodecyl-benzenesulfonate over TiO2-Cu2O under visible irradiation[J]. Journal of Hazardous Materials,2009,168(1):215.
12 Zhang Jie, Liu Wenxia, Wang Xiaowei, et al. Enhanced decoloration activity by Cu2O@TiO2 nanobelts heterostructures via a strong adsorption-weak photodegradation process[J]. Applied Surface Science,2013,282:84.
13 Wang Yanfen, Tao Jiajia, Wang Xingzhi, et al. A unique Cu2O/TiO2 nanocomposite with enhanced photocatalytic performance under visible light irradiation[J]. Ceramics International,2017,43(6):4866.
14 Han Chenghui, Li Zhiyu, Shen Jianyi. Photocatalytic degradation of the reactive brilliant red and its mechanism over nano-sized TiO2-Cu2O under visible irradiation[J]. Materials Review B: Research Papers,2014,28(7):4(in Chinese).
韩承辉,李智渝,沈俭一.纳米TiO2-Cu2O可见光下光催化降解活性艳红及其机理研究[J].材料导报:研究篇,2014,28(7):4.
15 Xue Jinbo, Shen Qianqian, Liang Wei, et al. Controlled synthesis of coaxial core-shell TiO2/Cu2O heterostructures by electrochemical method and their photoelectrochemical properties[J]. Materials Letters,2013,92:239.
16 Tang Yiwen, Chen Zhigang, Zhang Lisha, et al. Preparation and characterization of nanocrystalline Cu2O/TiO2 heterojunction film electrode[J]. Journal of Inorganic Materials,2006,21(2):453(in Chinese).
唐一文,陈志刚,张丽莎,等.纳米Cu2O/TiO2异质结薄膜电极的制备和表征[J].无机材料学报,2006,21(2):453.
17 Pavan M, Rühle S, Ginsburg A, et al. TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis[J]. Solar Energy Materials and Solar Cells,2015,132:549.
18 Ichimura M, Kato Y. Fabrication of TiO2/Cu2O heterojunction solar cells by electrophoretic deposition and electrodeposition[J]. Mate-rials Science in Semiconductor Processing,2013,16(6):1538.
19 Hussaain S, Cao C, Usman Z, et al. Fabrication and photovoltaic characteristics of Cu2O/TiO2 thin film heterojunction solar cell[J]. Thin Solid Films,2012,522:430.
20 Zhang Shengsen, Peng Biyu, Yang Siyuan, et al. The influence of the electrodeposition potential on the morphology of Cu2O/TiO2 nanotube arrays and their visible-light-driven photocatalytic activity for hydrogen evolution[J]. International Journal of Hydrogen Energy,2013,38(32):13866.
21 Xi Zhenhao, Li Changjiang, Zhang Lu, et al. Synergistic effect of Cu2O/TiO2 heterostructure nanoparticle and its high H2 evolution activity[J]. International Journal of Hydrogen Energy,2014,39(12):6345.
22 Duan Weijia, Zheng Min, Li Rong, et al. Morphology transformation of Cu2O by adding TEOA and their antibacterial activity[J]. Journal of Nanoparticle Research,2016,18(11):342.
23 Zhang Minghui, Yang Weike, Zheng Xuming. Study on SiO2 compound modification of cuprous oxide and its antibacterial properties[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences),2015,33(5):639(in Chinese).
张明慧,杨伟柯,郑旭明.氧化亚铜的SiO2复合改性及其抗菌性研究[J].浙江理工大学学报(自然科学版),2015,33(5):639.
24 Duan Weijia, Zheng Min, Li Rong, et al. Preparation of Cu2O hollow sphere and its antibacterial property[J]. 2017,34(3):13(in Chinese).
段为甲,郑敏,李容,等.氧化亚铜空心球的制备及其抗菌性能研究[J].印染助剂,2017,34(3):13.
25 Tian Xin, Li Shujin, Cao Yanyan, et al. Preparation, optical pro-perty, and photocatalytic activity of cubic Cu2O/amorphous TiO2 and spheric CuO/TiO2 core-shell nanocomposites[J]. Materials Letters,2014,131:86.
26 Han Tiehu, Zhou Dongmei, Wang Huigang, et al. The study on preparation and photocatalytic activities of Cu2O/TiO2 nanoparticles[J]. Journal of Environmental Chemical Engineering,2015,3(4):2453.
27 Xu Yuehua, Liang Dahui, Liu Manle, et al. Preparation and characterization of Cu2O-TiO2: Efficient photocatalytic degradation of methylene blue[J]. Materials Research Bulletin,2008,43(12):3474.
28 Wang Junyi, Ji Guangbin, Liu Yousong, et al. Cu2O/TiO2 heterostructure nanotube arrays prepared by an electrodeposition method exhibiting enhanced photocatalytic activity for CO2 reduction to methanol[J]. Catalysis Communications,2014,46:17.
29 Huang Lei, Peng Feng, Wang Hongjuan, et al. Preparation and characterization of Cu2O/TiO2 nano-nano heterostructure photocatalysts[J]. Catalysis Communications,2009,10(14):1839.
30 Dong Yongchun, Bai Zhipeng, Zhang Liwen. Purification of indoor ammonia with nano-TiO2 loaded on fabric[J]. China Environmental Science,2005,25(S):26(in Chinese).
董永春,白志鹏,张利文.纳米TiO2负载织物对室内空气中氨的净化[J].中国环境科学,2005,25(S):26.
31 Qi Feng, Li Fulin. Experiment research on curbing indoor pollution by photocatalyst[J]. Chemical Engineer,2010,179(8):44(in Chinese).
齐峰,李福林.光触媒治理室内空气污染的实验研究[J].化学工程师,2010,179(8):44.
32 Li Shiping, Tao Ye, Liu Peiying. Preparation of Mo-Doped Nano-TiO2 photocatlytic material and its characteristics of ammonia degradation[J]. Heat Treatment of Metals,2005,30(5):37(in Chinese).
李世平,陶冶,刘培英.Mo掺杂纳米TiO2光催化材料的制备及其降解氨气的研究[J].金属热处理,2005,30(5):37.
33 Ni Xiaomin, Zhang Xiaojun, Jin Xiang. Photocatalytic properties of Cu/TiO2/SiO2 nano-composite films for degrading ammonia[J]. Environmental Science & Technology,2009,32(11):44(in Chinese).
倪晓敏,张小俊,金翔.Cu/TiO2/SiO2纳米复合薄膜光催化降解氨气性能的研究[J].环境科学与技术,2009,32(11):44.
34 Kaviyarasan K, Anandan S, Mangalaraja R V, et al. Sonochemical synthesis of Cu2O nanocubes for enhanced chemiluminescence applications[J]. Ultrasonics Sonochemistry,2016,29:388.
35 Zhang Dongfeng, Zhang Hua, Guo Lin, et al. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability[J]. Journal of Materials Chemistry,2009,19(29):5220.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[3] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[4] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[7] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[8] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[11] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[12] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[13] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[14] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[15] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed