Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (3): 44-51    https://doi.org/10.11896/j.issn.1005-023X.2017.03.008
  材料综述 |
β钛合金成分设计:理论、方法、实践
王光荣1, 高颀2, 刘继雄2, 杨奇2, 王鼎春2, 姚锐1, 廖松义1, 郑峰1
1 中南大学材料科学与工程学院,长沙 410083;
2 宝钛集团有限公司,宝鸡 721014;
Composition Design of Beta-titanium Alloys: Theoretical, Methodological and Practical Advances
WANG Guangrong1, GAO Qi2, LIU Jixiong2, YANG Qi2, WANG Dingchun2,
YAO Rui1, LIAO Songyi1, ZHENG Feng1
1 School of Materials Science and Engineering, Central South University, Changsha 410083;
2 Baoji Titanium Group Ltd., Baoji 721014;
下载:  全 文 ( PDF ) ( 1414KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着科学技术的不断发展,高性能钛合金特別是β型钛合金的研究开发越来越受到世界各国的重视,伴随着应用过程,其合金设计方法得以不断地完善与提高。在新的设计方法指导下,近年来经常有新型高性能β钛合金被研发出来并得到实际应用。为了使广大冶金科技工作者,特别是从事钛合金研究的工程技术人员能够熟悉合金设计理论,着重分析讨论了β钛合金成分设计时应考虑的因素,包括β钛合金成分设计基本原理,合金化对钛合金性能的影响,Kβ稳定系数和Al、Mo当量设计准则,电子浓度因素和d-电子合金设计方法等。并简要介绍了在高强度、低模量、低成本等方面β钛合金的成分设计思路与研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王光荣
高颀
刘继雄
杨奇
王鼎春
姚锐
廖松义
郑峰
关键词:  β钛合金  成分设计  航空材料  生物医学材料    
Abstract: There is a considerable fervor occurring among developed counties on high performance titanium alloys. β-type titanium alloys are for sure received the most attention along with the awareness and acceptance of various methods of materials design. It is then the focus of this work to introduce several common and important issues regards to the design of β-type titanium alloys, including the basic principle of composition design, the effects of alloying on microstructure and properties, the coefficient Kβ, Al and Mo equivalent, electron concentration and d-electron alloy design theory. And we have revealed that these issues promised great potential applications in the fields of high strength structures, low modulus biomedical implants and low cost products as well.
Key words:  β-type titanium alloys    composition design    aerospace material    biomedical material
               出版日期:  2017-02-10      发布日期:  2018-05-02
ZTFLH:  TB31  
  TG146.23  
作者简介:  王光荣:男,1992年生,硕士研究生,主要从事钛合金材料的研究 E-mail:g3504251992@163.com 郑峰:通讯作者,男,教授,研究方向为相图预测与应用,燃料电池,功能陶瓷 E-mail:fzheng@csu.edu.cn
引用本文:    
王光荣, 高颀, 刘继雄, 杨奇, 王鼎春, 姚锐, 廖松义, 郑峰. β钛合金成分设计:理论、方法、实践[J]. 《材料导报》期刊社, 2017, 31(3): 44-51.
WANG Guangrong, GAO Qi, LIU Jixiong, YANG Qi, WANG Dingchun,
YAO Rui, LIAO Songyi, ZHENG Feng. Composition Design of Beta-titanium Alloys: Theoretical, Methodological and Practical Advances. Materials Reports, 2017, 31(3): 44-51.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.03.008  或          http://www.mater-rep.com/CN/Y2017/V31/I3/44
1 Niinomi M, Narushima T, Nakai M. Advances in metallic biomaterials[M].Berlin: Springer, 2015.
2 Yu Zhentao, Zhou Lian, Wang Keguang. Development and design of β-type titanium alloys for medical use[J]. Rare Metals Lett,2004 (1):5(in Chinese).
于振涛,周廉,王克光.生物医用型 β 型钛合金的设计与开发[J]. 稀有金属快报,2004(1):5.
3 Zeng Liying, Ge Peng. Progress in high strength titanium alloys for springs[J]. Titanium Ind Prog,2009,26(5):5(in Chinese).
曾立英, 葛鹏. 弹簧用高强钛合金的研究进展[J].钛工业进展,2009,26(5):5.
4 赵永庆,陈永楠,张学敏,等. 钛合金相变及热处理[M].长沙:中南大学出版社,2012.
5 Weiss I, Semiatin S L. Thermomechanical processing of beta tita-nium alloys—An overview[J]. Mater Sci Eng A,1998,243(1):46.
6 Jayaprakash M,Ping D H,Yamabe-Mitariai Y. Effect of Zr and Si addition on high temperature mechanical properties of near-α Ti-Al-Zr-Sn based alloys[J].Mater Sci Eng A,2014,612:456.
7 Zhu Zhishou, Ma Jimin, Gao Yang, et al. Effect of Nd-rich second phase particles on fracture behaviors of a near-α titanium alloy[J]. J Aeronaut Mater,2000,20(3):27(in Chinese).
朱知寿,马济民,高扬,等.富Nd 第二相颗粒对钛合金拉伸断裂方式的影响[J].航空材料学报,2000,20(3):27.
8 Zhao Yongqing, Liu Junlin, Zhou Lian. Analysis on the segregation of typical alloying elements of Cu, Fe and Cr in Ti alloys[J]. Rare Metal Mater Eng,2005,34(4):531 (in Chinese).
赵永庆,刘军林,周廉.典型 β 型钛合金元素Cu, Fe和Cr的偏析规律[J].稀有金属材料与工程,2005,34(4):531.
9 莫畏.钛[M].北京:冶金工业出版社,2008.
10 Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. J Appl Phys,2011,109(10):103505.
11 Morinaga M, Kato M, Kamimura T, et al. Theoretical design of beta-type titanium alloys[C]//Titanium′92: Science and Technology, Proc. 7th Int Conf.on Titanium.San Diego,1992:217.
12 Wang Qingjuan, Gao Qi, Wang Kuaishe, et al. Application of d-electronic alloy theory in design of titanium alloy[J]. Hot Work Technol,2013,42(12):14 (in Chinese).
王庆娟,高颀,王快社,等.d-电子合金理论在钛合金设计中的应用[J].热加工工艺,2013,42(12):14.
13 Abdel-Hady M, Hinoshita K, Morinaga M. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters[J]. Scripta Mater,2006,55(5):477.
14 Zhao Lichen, Cui Chunxiang, Liu Shuangjin, et al. Design and research on properties of new type metastable β-titanium alloys for biomedical applications based on the d-electron alloy design method[J]. Rare Metal Mater Eng,2008,37(1):108(in Chinese).
赵立臣,崔春翔,刘双进,等.基于d电子合金设计方法的生物医用新型亚稳 β 钛合金的设计及性能研究[J]. 稀有金属材料与工程,2008,37(1):108.
15 Dai S, Yu W, Feng C, et al. Design of new biomedical titanium alloy based on d-electron alloy design theory and JMatPro software[J]. Trans Nonferrous Met Soc China,2013,23(10):3027.
16 Kuramoto S, Furuta T, Hwang J H, et al. Plastic deformation in a multifunctional Ti-Nb-Ta-Zr-O alloy[J]. Metall Mater Trans A,2006,37(3):657.
17 Lu J, Zhao Y, Ge P, et al. Precipitation behavior and tensile properties of new high strength beta titanium alloy Ti-1300[J]. J Alloys Compd,2015,637:1.
18 Sun F, Zhang J Y, Marteleur M, et al. A new titanium alloy with a combination of high strength, high strain hardening and improved ductility[J]. Scripta Mater,2015,94:17.
19 Marteleur M, Sun F, Gloriant T, et al. On the design of new β-me-tastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects[J]. Scripta Mater,2012,66(10):749.
20 Brozek C, Sun F, Vermaut P, et al. A β-titanium alloy with extra high strain-hardening rate: Design and mechanical properties[J]. Scripta Mater,2016,114:60.
21 Fan J, Li J, Kou H, et al. Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti-7333[J]. Mater Design,2015,83:499.
22 Li C L, Mi X J, Ye W J, et al. A study on the microstructures and tensile properties of new beta high strength titanium alloy[J]. J Alloys Compd,2013,550:23.
23 Zhu Zhishou. Recent research and development of titanium alloys for aviation application in China[J]. J Aeronaut Mater,2014,34(4):44(in Chinese).
朱知寿.我国航空用钛合金技术研究现状及发展[J]. 航空材料学报,2014,34(4):44.
24 Du Z, Xiao S, Xu L, et al. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy[J]. Mater Des,2014,55:183.
25 Ivasishin O M, Markovsky P E, Matviychuk Y V, et al. A comparative study of the mechanical properties of high-strength β-titanium alloys[J]. J Alloys Compd,2008,457(1):296.
26 Yu Zhentao, Han Jianye, Ma Xiqun, et al. Biological and mechanical compatibility of biomedical titanium alloy materials[J]. J Clinical Rehabilitative Tissue Eng Res,2013,17(25):4707(in Chinese).
于振涛,韩建业,麻西群,等.生物医用钛合金材料的生物及力学相容性[J].中国组织工程研究,2013,17(25):4707.
27 Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications[J]. Acta Biomater,2012,8(11):3888.
28 Wang K. The use of titanium for medical applications in the USA[J]. Mater Sci Eng A,1996,213(1):134.
29 Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review[J]. Prog Mater Sci,2009,54(3):397.
30 Rack H J, Qazi J I. Titanium alloys for biomedical applications[J]. Mater Sci Eng C,2006,26(8):1269.
31 Dai Shijuan, Zhu Yuntian, Chen Feng. Present status and processing methods of novel β titanium alloys for biomedical applications[J]. J Chongqing Institute of Technology,2016,30(4):006(in Chinese).
戴世娟,朱运田,陈锋.新型医用β钛合金研究的发展现状及加工方法[J].重庆理工大学学报:自然科学版,2016,30(4):006.
32 Zhang Wenyu. The research progress of biomedical titanium alloy[J]. Chem Adhes,2014,36(5):369(in Chinese).
张文毓.生物医用钛合金的研究进展[J].化学与粘合,2014,36(5):369.
33 Yu Zhentao, Zhang Minghua, Yu Sen, et al. Analysis of R&D, production and application of biomedical Ti alloys materials applied in medical devices of China[J]. China Medical Device Information,2012,18(7):1(in Chinese).
于振涛,张明华,余森,等.中国医疗器械用钛合金材料研发,生产与应用现状分析[J].中国医疗器械信息,2012,18(7):1.
34 Hao Y L, Yang R, Niinomi M, et al. Young′s modulus and mecha-nical properties of Ti-29Nb-13Ta-4.6 Zr in relation to α ″martensite[J]. Metall Mater Trans A,2002,33(10):3137.
35 Ma Xiqun, Yu Zhentao, Niu Jinlong, et al. Development of microstructure and properties of novel biomedical titanium alloys[J]. Bio-med Eng Clinical Medicine,2013,17(6):610(in Chinese).
麻西群,于振涛,牛金龙,等.新型生物医用钛合金组织与性能研究进展[J]. 生物医学工程与临床,2013,17(6):610.
36 Zhao X, Niinomi M, Nakai M, et al. Optimization of Cr content of metastable β-type Ti-Cr alloys with changeable Young′s modulus for spinal fixation applications[J]. Acta Biomater,2012,8(6):2392.
37 Zhao X, Niinomi M, Nakai M, et al. Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young′s modulus for spinal fixation applications[J]. Acta Biomater,2011,7(8):3230.
38 Jing R, Liang S X, Liu C Y, et al. Aging effects on the microstructures and mechanical properties of the Ti-20Zr-6.5 Al-4V alloy[J]. Mater Sci Eng A,2013,559:474.
39 Liang S X, Ma M Z, Jing R, et al. Preparation of the ZrTiAlV alloy with ultra-high strength and good ductility[J]. Mater Sci Eng A,2012,539:42.
40 Liang S X, Yin L X, Zheng L Y, et al. Preparation of low cost TiZrAlFe alloy with ultra-high strength and favorable ductility[J]. Mater Sci Eng A,2015,639:699.
41 Ikeda M, Ueda M, Imaizumi K, et al. Phase constitution and heat treatment behavior of low cost Ti-Mn system alloys[J]. Key Eng Mater,2013,551:217.
42 Santos P F, Niinomi M, Cho K, et al. Microstructures, mechanical properties and cytotoxicity of low cost beta Ti-Mn alloys for biome-dical applications[J]. Acta Biomater,2015,26:366.
43 Abd-elrhman Y, Gepreel M A H, Abdel-Moniem A, et al. Compatibility assessment of new V-free low-cost Ti-4.7 Mo-4.5 Fe alloy for some biomedical applications[J]. Mater Des,2016,97:445.
44 Zhu K, Gui N, Jiang T, et al. The development of the Low-cost titanium alloy containing Cr and Mn alloying elements[J]. Metall Mater Trans A,2014,45(4):1761.
45 Zhang W, Zhu Z, Cheng C Y. A literature review of titanium metallurgical processes[J]. Hydrometallurgy,2011,108(3):177.
46 Suzuki K. An introduction to the extraction, melting and casting technologies of titanium alloys[J]. Metals Mater Int,2001,7(6):587.
47 Li Xianmin, Liu Li, Dong Jie, et al. Discussion on economic analysis and decreasing cost process of titanium and titanium alloys[J]. Mater China,2015,34(5):401(in Chinese).
李献民,刘立,董洁,等.钛及钛合金材料经济性及低成本方法论述[J].中国材料进展,2015,34(5):401.
48 Han Yi, Li Lian, Deng Zhenzhen, et al. Constituent optimization of Al-Zn-Mg-Cu alloy based on thermodynamic calculation method[J]. Chinese J Nonferrous Metals,2011,21(1):179(in Chinese).
韩逸,李炼,邓桢桢,等.热力学计算优化 Al-Zn-Mg-Cu 合金成分[J].中国有色金属学报,2011,21(1):179.
49 Wang Y Z, Ma N, Chen Q, et al. Predicting phase equilibrium, phase transformation, and microstructure evolution in titanium alloys[J]. JOM,2005,57(9):32.
50 Zhang F, Xie F Y, Chen S L, et al. Predictions of titanium alloy properties using thermodynamic modeling tools[J]. J Mater Eng Perform,2005,14(6):717.
51 Han Y, Zeng W, Sun Y, et al. Development of a database system for operational use in the selection of titanium alloys[J]. Int J Miner Metall Mater,2011,18(4):444.
52 Malinov S, Sha W. Application of artificial neural networks for mo-delling correlations in titanium alloys[J]. Mater Sci Eng A,2004,365(1):202.
[1] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[2] 徐帅, 陈灵芝, 曹书光, 贾皓东, 周张健. 先进核能系统用ODS钢的显微组织设计与调控研究进展[J]. 材料导报, 2019, 33(1): 78-89.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed