Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2057-2063    https://doi.org/10.11896/cldb.20040072
  金属与金属基复合材料 |
Mo掺杂对γ-TiAl基合金能量稳定性和抗氧化性的影响
宋庆功1,2, 董珊珊2, 胡烨2, 康建海1, 严慧羽1, 王明超1, 刘志锋1
1 中国民航大学理学院,低维材料与技术研究所,天津 300300;
2 中国民航大学中欧航空工程师学院,天津 300300
Effect of Mo Addition on Energy Stability and Oxidation Resistance of γ-TiAl Based Alloys: a Study Based on First Principles Calculation
SONG Qinggong1,2, DONG Shanshan2, HU Ye2, KANG Jianhai1, YAN Huiyu1, WANG Mingchao1, LIU Zhifeng1
1 Institute of Low Dimensional Materials and Technology, College of Science, Civil Aviation University of China, Tianjin 300300, China;
2 Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China
下载:  全 文 ( PDF ) ( 3483KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 γ-TiAl基合金是一类具有广阔应用前景的高温结构材料,改善其高温抗氧化性能是当前研究的热点之一。以第一性原理计算为基础,研究了Mo含量小于9.26%(原子分数)的20种γ-TiAl基合金体系的几何性质、密度、原子平均形成能、间隙O原子的形成能、Al空位和Ti空位的形成能。结果显示:各种Mo替位掺杂γ-TiAl基合金体系的密度升高,但均小于4.5 g·cm-3,仍具有替代传统镍基合金的密度优势。各个掺杂体系的总能量和原子平均形成能均小于零,显示它们具有良好的能量稳定性,据此预测它们可以由实验制备。随Mo含量的升高,掺杂体系的稳定性逐渐降低。通过对Mo掺杂γ-TiAl体系的O原子形成能差值ΔEf(O)、Al空位与Ti空位形成能差值ΔEV的计算和分析揭示,当Mo含量为4.0%~7.4%时,阻碍间隙O原子扩散的势垒增大,Al空位扩散的能力得以提升且Ti空位扩散的能力被抑制。这对在γ-TiAl基体表面生成α-Al2O3占主导地位的连续致密氧化膜有重要作用,为研发抗氧化性能优良的新材料提供了理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋庆功
董珊珊
胡烨
康建海
严慧羽
王明超
刘志锋
关键词:  γ-TiAl基合金  稳定性  抗氧化性  第一性原理    
Abstract: γ-TiAl based alloy is a kind of high temperature structural materials with wide application field. Improving its high temperature oxidation resis-tance is one of the research hotspots. The geometric properties, densities, average formation energies of atom, formation energies of interstitial oxygen (O) atom, aluminum (Al) vacancy and titanium (Ti) vacancy of 20 γ-TiAl based alloys with Mo content less than 9.26% (atomic percentage) were studied based on the first principles calculation. The results indicate that the density of each Mo substituted γ-TiAl based alloy system increases, but all of them are less than 4.5 g·cm-3, which still has the density advantage of replacing the traditional Ni based alloys. The total energy and the average atomic formation energy of each doped system are all negative, which show the system has good energy stability and can be predicted to be prepared by experiments. The stability of Mo doped system decreases gradually with the increase of dopant content. Through the calculation and analysis of the difference of formation energy of O atom (ΔEf(O)) and the difference (ΔEV) of formation energy of Al vacancy and Ti vacancy (ΔEV) in Mo doped γ-TiAl system, it is revealed that when the Mo content is 4.0%—7.4%, the alloy system doped with Mo can not only increase the height of barrier of O-atom diffusion, but also promote the improvement of Al vacancy diffusion ability and the inhibition of Ti vacancy diffusion ability. It plays an important role in the formation of continuous, compact and adherent oxide scale dominated by α-Al2O3 on the surface of γ-TiAl matrix, and provides a theoretical basis for the development of new materials with excellent oxidation resis-tance.
Key words:  γ-TiAl based alloy    stability    anti-oxidation    first-principles
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TG178  
基金资助: 国家自然科学基金(51802343)
通讯作者:  qgsong@cauc.edu.cn   
作者简介:  宋庆功,中国民航大学教授。2008年3月毕业于天津大学,获得材料物理与化学博士学位。2001年至今在中国民航大学工作,任教授,材料科学与工程、航空工程硕导。曾获得高等教育天津市教学成果二等奖、河北省科协青年科技奖等。主要从事新型材料设计与计算、结构与性质预报,高性能低维材料制备,材料信息学和材料智能化研究。主持和参与完成国家自然科学基金项目等多项,发表论文100余篇,多数被SCI/EI收录。
引用本文:    
宋庆功, 董珊珊, 胡烨, 康建海, 严慧羽, 王明超, 刘志锋. Mo掺杂对γ-TiAl基合金能量稳定性和抗氧化性的影响[J]. 材料导报, 2021, 35(2): 2057-2063.
SONG Qinggong, DONG Shanshan, HU Ye, KANG Jianhai, YAN Huiyu, WANG Mingchao, LIU Zhifeng. Effect of Mo Addition on Energy Stability and Oxidation Resistance of γ-TiAl Based Alloys: a Study Based on First Principles Calculation. Materials Reports, 2021, 35(2): 2057-2063.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040072  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2057
1 Bewlay B P,Nag S, Suzuki A, et al. Materials at High Temperatures, 2016, 33(4-5), 549.
2 Erdely P, Staron P, Maawad E, et al. Materials and Design, 2017, 131, 286.
3 Burtscher M, Klein T, Mayer S, et al. Intermetallics, 2019, 114, 106611.
4 Williams J C, Boyer R R. Metals, 2020, 10(6), 705.
5 Yoshihara M, Kim Y W. Intermetallics, 2005, 13(9), 952.
6 Kim S W, Hong J K, Na Y S, et al. Materials and Design, 2014, 54, 814.
7 Tang S Q, Qu S J, Feng A C, et al. Chinese Journal of Rare Metals, 2017, 41(1), 81(in Chinese).
汤守巧, 曲寿江, 冯艾寒, 等.稀有金属, 2017, 41(1), 81.
8 Zhang T B, Ding H, Deng Z H, et al. Rare Metal Materials and Engineering, 2012, 41(1), 33(in Chinese).
张铁邦, 丁浩, 邓志海, 等.稀有金属材料与工程, 2012, 41(1), 33.
9 Garip Y,Ozdemir O. Journal of Alloys and Compounds, 2020, 818, 152818.
10 Zeng S W. Research on hot deformation and oxidation behavior of TiAl containing Nb, Mo. Ph. D. Thesis, University of Science and Technology Beijing, China, 2015(in Chinese).
曾尚武. 含铌, 钼TiAl合金热变形及氧化行为研究. 博士学位论文, 北京科技大学, 2015.
11 Ping F P, Hu Q M, Yang R. Acta Metallurgica Sinica, 2013, 49(4), 385(in Chinese).
平发平, 胡青苗, 杨锐.金属学报, 2013, 49(4), 385.
12 Kim D J, Seo D Y, Hong J K, et al. Canadian Metallurgical Quarterly, 2017, 56(1), 123.
13 Ouyang P X, Mi G B, Li P J, et al. Materials, 2019, 12, 2114.
14 Han C S, Jin S Y, Bang H I. Korean Journal of Materials Research, 2018, 28(6), 361.
15 Neelam N S, Banumathy S, Bhattacharjee A, et al. Corrosion Science, 2020, 163, 108300.
16 Pflumm R,Donchev A, Mayer S, et al. Intermetallics, 2014, 53, 45.
17 Gong X, Chen R R, Yang Y H, et al. Applied Surface Science, 2018, 431, 81.
18 Li H, Wang S Q, Ye H Q. Acta Physica Sinica, 2009, 58(monography), 224(in Chinese).
李虹, 王绍青, 叶恒强.物理学报, 2009, 58(专刊), 224.
19 Wang H Y, Hu Q K, Yang W P, et al. Acta Physica Sinica, 2016, 65(7), 077101(in Chinese).
王海燕, 胡前库, 杨文朋, 等.物理学报, 2016, 65(7), 077101.
20 Song Q G, Wang L J, Zhu Y X, et al. Acta Physica Sinica, 2019, 68(19), 196101(in Chinese).
宋庆功, 王丽杰, 朱燕霞, 等.物理学报, 2019, 68(19), 196101.
21 Wu G D, Cui G R, Qu S J, et al. Scripta Materialia, 2019, 171, 102.
22 Bakulin A V, Kulkov S S, Kulkova S E. Journal of Experimental and Theoretical Physics, 2020, 130(4), 579.
23 Novoselova T, Malinov S, Sha W, et al. Materials Science and Enginee-ring A, 2004, 371(1-2), 103.
24 Segall M D, Lindan P J D, Probert M J. Journal of Physics-Condensed Matter, 2002, 14(11), 2717.
25 Menon E S K, Fox A G, Mahapatra R. Journal of Materials Science Letters, 1996, 15(14), 1231.
26 Song Q G, Jiang E Y. Acta Physica Sinica, 2008, 57(3), 1823(in Chinese).
宋庆功, 姜恩永.物理学报, 2008, 57(3), 1823.
27 Kong F T, Chen Z Y, Tian J, et al. Rare Metal Materials and Enginee-ring, 2003, 32(2), 81(in Chinese).
孔凡涛, 陈子勇, 田竞, 等.稀有金属材料与工程, 2003, 32(2), 81.
28 Dang H L, Wang C Y, Yu T. Acta Physica Sinica, 2007, 56(5), 2838(in Chinese).
党宏丽, 王崇愚, 于涛.物理学报, 2007, 56(5), 2838.
29 Song Q G, Xu K, Gu W F, et al. Material Review B: Research Papers, 2018, 32(9), 3154(in Chinese).
宋庆功, 许科, 顾威风, 等.材料导报:研究篇, 2018, 32(9), 3154.
30 Maurice V, Despert G, Zanna S, et al. Acta Meterialia, 2007, 55(10), 3315.
31 Zhao L, Zhang Y, Zhu Y, et al. Materials at High Temperatures, 2016, 33(3), 234.
[1] 简单, 朱燮刚, 刘瑜, 宋海峰, 赖新春. U和UO2状态方程研究进展[J]. 材料导报, 2021, 35(1): 1082-1095.
[2] 左文韬, 樊正方, 刘国强, 刘江, 廖成. 电荷传输层和热退火对钙钛矿薄膜电学性能的影响[J]. 材料导报, 2020, 34(Z1): 13-18.
[3] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[4] 杨波, 王启扬, 杨肖, 杨冬梅. 原位反应制备陶瓷基复合相变材料及其工艺研究[J]. 材料导报, 2020, 34(Z1): 128-131.
[5] 王启扬, 杨波. 碳酸盐基常固态复合相变材料的制备与性能研究[J]. 材料导报, 2020, 34(Z1): 137-139.
[6] 郭鹏, 冯云霞, 孟献春, 孟建玮, 潘维霖, 高云, 刘洋. 蓄盐融雪除冰剂微观分析及对混合料水稳定性的影响[J]. 材料导报, 2020, 34(6): 6062-6065.
[7] 武斌, 安晓鹏, 史才军, 魏子易, 元强. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048.
[8] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[9] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[10] 吴玲玲, 任其亮, 罗莉. 公路沥青混凝土路面材料高温稳定性研究[J]. 材料导报, 2020, 34(22): 22083-22086.
[11] 耿九光, 兰倩, 刘光军, 周恒玉, 刘润喜. 基于表面能理论的破碎卵石与沥青粘附性能研究[J]. 材料导报, 2020, 34(20): 20034-20039.
[12] 刘亮, 汪志太, 杨伟, 王振军, 蔡长春, 余欢. 铜模喷铸Mg-6Al-1Y合金快冷组织形成及其固溶行为[J]. 材料导报, 2020, 34(20): 20066-20069.
[13] 王磊, 吴天昊, 崔丹钰, 杨旭东. 甲胺(MA)基钙钛矿太阳电池光诱导缺陷机理及稳定性提高[J]. 材料导报, 2020, 34(2): 2001-2004.
[14] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[15] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed