Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2001-2004    https://doi.org/10.11896/cldb.18120208
  无机非金属及其复合材料 |
甲胺(MA)基钙钛矿太阳电池光诱导缺陷机理及稳定性提高
王磊, 吴天昊, 崔丹钰, 杨旭东
上海交通大学材料科学与工程学院,上海 200240
Light-induced Defect Mechanism and Stability Enhancement for Methylamine (MA) Based Perovskite Solar Cells
WANG Lei, WU Tianhao, CUI Danyu, YANG Xudong
School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China
下载:  全 文 ( PDF ) ( 2929KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 有机-无机杂化钙钛矿太阳电池的研究发展迅速,然而其稳定性差,提高其稳定性一直是该领域的研究难点。影响稳定性的主要因素包括水、氧、光照、热等,其中水、氧可通过有效的封装技术加以隔绝,而获得光照稳定性的方法仍需要深入探索。本研究通过电学、光学等测试方法研究了光照对MAPbI3器件稳定性的影响。通过热导纳谱(TAS)、电容-电压(C-V)、X射线光电子能谱(XPS)等分析发现,光照老化器件内部会增加由碘离子空位VI和Pb-I反位缺陷IPb导致的深能级缺陷态。这些缺陷态使载流子的复合加强,造成能量损失,致使开路电压在低光照强度下衰减更加严重。本工作对比研究了FA0.85MA0.15Pb (I0.85Br0.15)3器件的光照稳定性,由瞬态光电压(TPV)测试结果发现,FA离子和Br离子可以减少载流子复合。本研究结果为提高电池的光照稳定性提供了新的研究思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王磊
吴天昊
崔丹钰
杨旭东
关键词:  甲胺  钙钛矿  太阳电池  光稳定性  开路电压  深能级缺陷    
Abstract: The research on organic-inorganic hybrid perovskite solar cells has advanced rapidly. However, it holds poor stability, and it is a great challenge to improve its stability in this research field. The main factors that influence the device stability include moisture, oxygen, light and heat. Generally, the effective encapsulation technology is capable of preventing the devices from contacting moisture and oxygen. In-depth exploration still should be carried out to achieve the light stability of the cells. Herein, we studied the effect of light on the stability of MAPbI3 devices by means of electronic and optical characterization methods. According to the results of thermal admittance spectroscopy (TAS), capacitance-vol-tage (C-V) and X-ray photoelectron spectroscopy (XPS), we found increased deep level defect states induced by iodide vacancies and IPb antisite in aging perovskite films. These defect states can induce non-radiative recombination, which ultimately cause large energy loss and decrease in the open circuit voltage at low light intensity. In addition, we conducted comparative study of FA0.85MA0.15Pb (I0.85Br0.15)3 devices and MAPbI3 devices in light stability. The results of transient photovoltage (TPV) test indicated that the FA and Br ions could reduce the carriers recombination. This work provides a new understanding to improve the light stability of perovskite solar cells.
Key words:  methylamine    perovskite    solar cell    light stability    open circuit voltage    deep level defect
               出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  TB34  
基金资助: 国家自然科学基金(11574199)
通讯作者:  Yang.Xudong@sjtu.edu.cn   
作者简介:  王磊,2016年6月毕业于南京大学现代工程与应用科学学院,获得理学学士学位。2016年9月至今在上海交通大学材料科学与工程学院攻读硕士学位,主要研究钙钛矿太阳能电池器件的衰减机理和电池模型模拟;杨旭东,上海交通大学材料学院特别研究员。2005年博士毕业于中国科学院,后为英国剑桥大学博士后,日本物质材料研究所ICYS研究员,2014年加入上海交通大学。主要研究领域是新型太阳能电池的光电转化机理和高效稳定光电器件的实现。
引用本文:    
王磊, 吴天昊, 崔丹钰, 杨旭东. 甲胺(MA)基钙钛矿太阳电池光诱导缺陷机理及稳定性提高[J]. 材料导报, 2020, 34(2): 2001-2004.
WANG Lei, WU Tianhao, CUI Danyu, YANG Xudong. Light-induced Defect Mechanism and Stability Enhancement for Methylamine (MA) Based Perovskite Solar Cells. Materials Reports, 2020, 34(2): 2001-2004.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120208  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2001
1 Lee M, Teuscher J, Miyasaka T, et al. Science, 2012, 338(6107), 643.2 Xing G C, Mathews N, Sun S Y, et al. Science, 2013, 342(6156), 344.3 Stranks S D, Eperon G E, Grancini G, et al. Science, 2013, 342(6156), 341.4 Mcmeekin D P, Sadoughi G, Rehman W, et al. Science, 2016, 351(6269), 151.5 Chen H, Ye F, Tang W T, et al. Nature, 2017, 550(7674), 92.6 Luo D Y, Yang W Q, Wang Z P, et al. Science, 2018, 360(6396), 1442.7 Mei A Y, Li X, Liu L F, et al. Science, 2014, 345(6194), 295.8 Yang J L, Siempelkamp B D, Liu D Y, et al. ACS Nano, 2015, 9(2), 1955.9 Yun J S, Kim J, Young T, et al. Advanced Functional Materials, 2018, 28(11), 1705363.10 Aristidou N, Sanchez-molina I, Chotchuangchutchaval T, et al. Angewandte Chemie International Edition, 2015, 54(28), 8208.11 O′mahony F T F, Lee Y H, Jellett C, et al. Journal of Materials Chemistry A, 2015, 3(14), 7219.12 Sheikh A D, Bera A, Hague M A, et al. Solar Energy Materials and Solar Cells, 2015, 137, 6.13 Leijtens T, Eperon G E, Pathak S, et al. Nature Communications, 2013, 4, 2885.14 Bella F, Griffini G, Correa-baena J P, et al. Science, 2016, 354(6309), 203.15 Yuan Y B, Chae J, Shao Y C, et al. Advanced Energy Materials, 2015, 5(15), 1500615.16 Kim G Y, Senocrate A, Yang T Y. Nature Materials, 2018, 17(5), 445.17 Bi E B, Chen H, Xie F X, et al. Nature Communications, 2017, 8, 7.18 Bush K A, Palmstrom A F, Yu Z J, et al. Nature Energy, 2017, 2(4), 17009.19 Chen W, Wu Y Z, Yue Y F, et al. Science, 2015, 350(6263), 944.20 Leijtens T, Eperon G E, Noel N K, et al. Advanced Energy Materials, 2015, 5(20), 1500963.21 Wojciechowski K, Leijtens T, Spirova S, et al. Journal of Physical Chemistry Letters, 2015, 6(12), 2399.22 Do Kim H, Ohkita H, Benten H, et al. Advanced Materials, 2016, 28(5), 917.23 Tress W, Yavari M, Domanski K, et al. Energy Environmental Science, 2018, 11(1), 151.24 Cai M, Ishida N, Li X, et al. Joule, 2018, 2(2), 296.25 Duan H S, Zhou H P, Chen Q, et al. Physical Chemistry Chemical Phy-sics, 2015, 17(1), 112.26 Huang J S, Yuan Y B, Shao Y C, et al. Nature Review Materials, 2017, 2(7),17042.27 Li Y Z, Xu X R, Wang C, et al. Journal of Physical Chemistry C, 2017, 121(7), 3904.28 Tang X F, Brandl M, May B, et al. Journal of Materials Chemistry, 2016, 4(41), 15896.29 Leyden M R, Lee M V, Raga S R, et al. Journal of Materials Chemistry, 2015, 3(31), 16097.30 Frost J M, Butler K T, Brivio F, et al. Nano Letters, 2014, 14(5), 2584.31 Noh J H, Im S H, Heo J H, et al. Nano Letters, 2013, 13(4), 1764.
[1] 杨志春, 吴狄, 剡晓波, 蒋昭毅, 刘宗豪, 陈炜. 大面积钙钛矿薄膜制备技术的研究进展[J]. 材料导报, 2021, 35(1): 1046-1057.
[2] 栾福园, 杨松旺, 吴子华, 谢华清. 钙钛矿太阳能电池的环境友好化研究进展[J]. 材料导报, 2020, 34(Z2): 11-16.
[3] 刘侠妤. 卤化铅钙钛矿量子点太阳能电池的进展与展望[J]. 材料导报, 2020, 34(Z2): 17-18.
[4] 左文韬, 樊正方, 刘国强, 刘江, 廖成. 电荷传输层和热退火对钙钛矿薄膜电学性能的影响[J]. 材料导报, 2020, 34(Z1): 13-18.
[5] 董丽卡, 丁明乐, 庄志山, 夏广波, 邓倩囡, 邱琳琳, 杜平凡. 柔性及纺织基钙钛矿太阳能电池的研究进展[J]. 材料导报, 2020, 34(7): 7053-7060.
[6] 林佩俭, 苗鹤, 王洲航, 陈斌, 武旭扬, 袁金良. 固体氧化物燃料电池(SOFC)钛基钙钛矿阳极的研究进展[J]. 材料导报, 2020, 34(5): 5032-5038.
[7] 安世崇,黄茜,陈沛润,张力,赵颖,张晓丹. 半透明钙钛矿及叠层太阳电池中的透明电极研究综述[J]. 材料导报, 2020, 34(3): 3069-3079.
[8] 李梓进, 王维燕, 李红江, 黄金华, 徐清. 钙钛矿/晶硅叠层太阳电池关键材料与技术研究进展[J]. 材料导报, 2020, 34(21): 21061-21071.
[9] 刘壮, 陈建林, 彭卓寅, 陈荐. SnO2应用于钙钛矿太阳电池电子传输层的研究进展[J]. 材料导报, 2020, 34(21): 21072-21080.
[10] 茹鹏斌, 毕恩兵, 陈汉. 无机电荷传输层界面修饰制备稳定钙钛矿太阳能电池[J]. 材料导报, 2020, 34(18): 18003-18008.
[11] 于嫚. 聚焦钙钛矿光伏器件中慢速动力学机制研究进展[J]. 材料导报, 2020, 34(15): 15059-15062.
[12] 卢刚, 杨振英, 何凤琴, 郑璐, 钱俊, 封先锋, 高嘉庆. N型背接触异质结太阳电池背面结构参数优化[J]. 材料导报, 2019, 33(z1): 45-49.
[13] 肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.
[14] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[15] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed