

[补充信息]

甲胺(MA)基钙钛矿太阳电池光诱导缺陷机理及稳定性提高

王 磊,吴天昊,崔丹钰,杨旭东∞

上海交通大学材料科学与工程学院,上海 200240

[Supplementary Information]

Light-induced Defect Mechanism and Stability Enhancement for Methylamine (MA) Based Perovskite Solar Cells

WANG Lei, WU Tianhao, CUI Danyu, YANG Xudong[⊠]

School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

实验

本实验在 570 ℃采用喷雾-热解乙酰丙酮镍溶液制备 NiO_x层。一步旋涂法,按化学计量配比,溶 剂 V(DMF): V(DMSO)=4:1,反溶剂为氯苯,钙钛矿溶液浓度为 1.2 mol/L,制备 MA 和掺 FA,Br 的 钙钛矿层,以 1 000 r/min 旋涂 10 s,以 5 000 r/min 旋涂 30 s,之后 100 ℃退火 20 min。旋涂法制 备电子传输层 PCBM,以 1 500 r/min 旋涂 30 s,然后在 70 ℃退火 10 min。旋涂制备穴阻挡层 BCP, 以 5 000 r/min 旋涂 30 s,然后在 70 ℃退火 5 min。电极采用真空热蒸镀,电极的掩模板面积为 1 cm², 制备好的器件使用环氧树脂进行封装。电池光伏性能测试过程中采用恒温台控制温度。13 个变光强度 为经过实际测量后的具体数值,分别是是 0.0001 Sun、0.0002 Sun、0.0003 Sun、0.00110 Sun、0017 Sun、 0.0041 Sun、0.0104 Sun、0.0133 Sun、0.0292 Sun、0.0598 Sun、0.0778 Sun、0.1303 Sun、0.3107 Sun、 1 Sun (1 Sun 代表一个太阳光)。

MAPbl₃和 FA_{0.85}MA_{0.15}Pb (l_{0.85}Br_{0.15})3 电池的性能表现

MAPbl3 电池和 FA0.85MA0.15Pb (l0.85Br0.15)3 电池在一个标准太阳光 AM1.5G 下的电池参数见表 S1 和表 S2。

Table S2 J _{sc} , V _{oc} , FF, PCE of MAPbl ₃ solar cells				
	J _{sc} /(mA/cm ²)	V _{oc} /V	FF/%	PCE/%
Forward	22.38	1.085	77.89	18.91
Reverse	22.43	1.086	78.20	19.05
表 S2 FA _{0.85} MA _{0.15} Pb (I _{0.85} Br _{0.15})₃复合电池的 J _{sc} , V _{oc} , FF, PCE				
Table S2 J _{sc} , V _{oc} , FF, PCE of FA _{0.85} MA _{0.15} Pb (I _{0.85} Br _{0.15}) ₃ solar cells				
	J _{sc} /(mA/cm ²)	V _{oc} /V	FF/%	PCE/%
Forward	20.86	1.067	77.06	17.15
Reverse	20.90	1.071	77.53	17.35

表 S1 MAPbl₃ 电池的 J_{sc}, V_{oc}, FF, PCE

⊠ Yang.Xudong@sjtu.edu.cn

未衰减 MAPbl₃和 FA_{0.85}MA_{0.15}Pb (l_{0.85}Br_{0.15})₃ 电池在一个标准太阳光 AM1.5G 下的电池性能见图 S1 和图 S2。

图 S1 1 cm²的 MAPbl₃ 电池的性能表现: (a) 钙钛矿薄膜的 SEM 图; (b) 薄膜的紫外-可见光吸收谱; (c) 电流密度-电压曲线; (d) IPCE 曲线和积分电流

Fig.S1 Properties of MAPbl₃ device with 1 cm²: (a) top-view SEM film; (b) UV-Vis absorption; (c) *J-V* curve; (d) IPCE and calculated intergrated J_{sc}

图 S2 1 cm² 的 FA_{0.85}MA_{0.15}Pb (l_{0.85}Br_{0.15})₃ 电池的性能表现: (a) 钙钛矿薄膜的 SEM 图; (b) 薄膜的紫 外-可见光吸收谱; (c) 电流密度-电压曲线; (d) IPCE 曲线和积分电流

Fig.S2 Properties of FA_{0.85}MA_{0.15}Pb ($I_{0.85}Br_{0.15}$)₃ device with 1 cm²: (a) top-view SEM film; (b) UV-Vis absorption; (c) *J-V* curve; (d) IPCE and calculated intergrated J_{sc}

瞬态光电压

MAPbl3 和 FA0.85MA0.15Pb (I0.85Br0.15)3 电池的瞬态光电压曲线见图 S3。

图 S3 在不同的光照持续时间下电池的瞬态光电压:(a)1 cm²的 MAPbl₃电池;(b)1 cm²的 FA_{0.85}MA_{0.15}Pb-(l_{0.85}Br_{0.15})₃

Fig.S3 TPV during different light illumination time for: (a) MAPbI₃ device with 1 cm²; (b) $FA_{0.85}MA_{0.15}Pb-(I_{0.85}Br_{0.15})_3$ device with 1 cm²