Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21061-21071    https://doi.org/10.11896/cldb.19100064
  无机非金属及其复合材料 |
钙钛矿/晶硅叠层太阳电池关键材料与技术研究进展
李梓进1,2, 王维燕2,3,*, 李红江2, 黄金华2, 徐清1
1 宁波大学材料科学与化学工程学院,宁波 315211;
2 中国科学院宁波材料技术与工程研究所,宁波 315201;
3 浙江大学硅材料国家重点实验室,杭州 310027
Recent Progress on Key Material and Technology for Perovskite/Silicon Tandem Solar Cells
LI Zijin1,2, WANG Weiyan2,3,*, LI Hongjiang2, HUANG Jinhua2, XU Qing1
1 School of Materials Science and Chemistry Engineering,Ningbo University,Ningbo 315211, China
2 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
3 State Key Laboractory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
下载:  全 文 ( PDF ) ( 7763KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 太阳电池要成为常规能源需不断提高光电转换效率、降低电池成本。叠层太阳电池采用不同禁带宽度的材料吸收太阳光,可减少高于带隙的高能量太阳光的热化损失,以及低于带隙的低能量太阳光不能被吸收的损失,提高电池光电转换效率。近几年,钙钛矿/晶硅叠层太阳电池因具有带隙匹配、光电转换效率高、工艺简单等特性,成为新兴的研究热点。经过近五年的发展,钙钛矿/晶硅叠层太阳电池的光电转换效率已被快速提升至28%。
要实现高效的钙钛矿/晶硅叠层太阳电池,关键材料与结构的发展必不可少。钙钛矿/晶硅叠层电池主要包括四端和两端结构。其中两端叠层电池,因仅需要一个透明电极,有利于减少寄生吸收、降低成本,成为主流钙钛矿/晶硅叠层电池结构。除了结构改进外,开发高质量的关键材料对高效叠层电池也十分重要。首先,钙钛矿顶电池的金属电极需要替换成透明电极,使得透过顶电池的太阳光能被底电池吸收。目前主流的体系为透明导电氧化物。其次,钙钛矿顶电池的理想带隙为1.7~1.8 eV,因此需要开发高质量的宽带隙钙钛矿电池,以实现开路电压的增益。最后,两端叠层电池的中间界面层起复合载流子和调控光传输的双重作用,需要探寻具有优异光电特性的界面层材料。目前主流的中间界面层体系包括氧化铟锡、掺杂纳米硅以及含纳米硅的氧化硅薄膜等。
虽然通过关键材料和结构的发展,叠层电池光电转换效率已经达到28%,但距43%的极限效率还有一定的差距,需进一步提高叠层电池的短路电流密度、开路电压等光伏特性参数。为提高叠层电池的短路电流密度,需降低载流子传输层、透明电极、中间界面层的寄生吸收损失,同时通过绒面结构、减反层、折射率匹配的界面层等光管理手段降低界面的反射损失。提高叠层电池开路电压的关键是提高宽带隙钙钛矿电池的开路电压。通过上述光电管理协同作用,叠层电池光电转换效率有望突破30%。
本文以钙钛矿/晶硅叠层太阳电池性能发展为主线,首先简要介绍了叠层电池的结构及光电性能发展历史;然后介绍叠层电池的关键材料,重点包括透明电极、中间界面层、宽带隙钙钛矿电池;在此基础上,分析叠层电池光电转换效率制约因素及提升途径;最后对叠层电池的高效化、大面积、稳定性的未来发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李梓进
王维燕
李红江
黄金华
徐清
关键词:  钙钛矿/晶硅叠层太阳电池  透明电极  中间界面层  宽带隙钙钛矿电池  光管理    
Abstract: To make photovoltaic system be competitive with conventional energy resources, the levelized cost of electricity should be reduced. The straightforward approach to reduce cost is to raise the power conversion efficiency (PCE). Tandem solar cells, using high bandgap top cell combined with low bandgap bottom cell, can reduce the thermalization loss for high energy photons and sub-bandgap losses for low energy photons, as a result, increasing the PCE of solar cells. Recently, the emerging perovskite/crystalline silicon (c-Si) tandem solar cells, with the advantages of appropriate bandgap, high theoretical efficiency, and simple preparation processes, has made tremendous progress. The record efficiency for perovskite/c-Si tandem solar cells is improved to 28%.
The architecture of perovskite/c-Si tandem solar cells mainly includes mechanically stacked four-terminal and monolithically integrated two-terminal configuration. Among them, the monolithic tandem solar cells, which only use one transparent electrode, can reduce the parasitic absorption and preparation cost, becoming the mainstream architecture. Besides configuration improvement, the development of appropriate materials for tandem solar cells is also of great importance. Firstly, the opaque metal electrodes in top perovskite solar cells should be replaced by transpa-rent electrodes, in order that the bottom c-Si solar cells can absorb the transmitted infrared photons. The mainly used transparent electrode is transpa-rent conductive oxides. Secondly, the optimal bandgap of top perovskite solar cells is 1.7—1.8 eV. However, there is a strong deviation between open-circuit voltage and bandgap for wide bandgap perovskite solar cells. Thus, developing high performance wide bandgap perovskite solar cells is important to achieve high voltage and PCE of tandem solar cells. Thirdly, the interlayer between perovskite and c-Si subcells functions to recombine charge carriers and couple light into bottom cells, thus interlayer should possess intermediate refractive index, low parasitic absorption, and optimized conductivity. The commonly used interlayer includes tin doped indium oxides, doped nanocrystalline silicon, and nanocrystalline silicon oxides.
Though fast progresses have been made for the performance of tandem solar cells, the state-of-the-art efficiency of 28% is still well below the theoretical limit efficiency of 43%, thus large efforts should be done to further improve the open-circuit voltage, short-circuit current density, and PCE of tandem solar cells. To improve the current density, the parasitic absorption in charge transport layer, transparent electrodes, interlayer should be further minimized, and the reflection loss should be reduced through light management, such as using textured structure, anti-reflection layer, and interlayer with optimized reflective index. To improve the voltage, increasing the voltage of wide bandgap perovskite solar cells is of great importance. It is believed that the PCE of tandem solar cells will beyond 30% in the near further.
In this review article, the architecture and performance of perovskite/c-Si tandem solar cells are briefly presented. Then the development of crucial materials for tandem solar cells is introduced, including transparent electrodes, intermediate layers, and wide bandgap perovskite solar cells. The losses in tandem solar cells is given, and the strategies for further improving performance is presented. At last, our insight about the future of perovskite/c-Si tandem solar cells is presented.
Key words:  perovskite/silicon tandem solar cells    transparent electrodes    intermediate layers    wide bandgap perovskite solar cells    light ma-nagement
               出版日期:  2020-11-10      发布日期:  2020-11-17
ZTFLH:  TM914.4  
基金资助: 宁波市科技创新2025重大专项 (2018B10055); 硅材料国家重点实验室开放课题 (SKL2018-02)
作者简介:  李梓进,2016年6月毕业于合肥工业大学,获得工学学士学位。现为宁波大学与中国科学院宁波材料技术与工程研究所联合培养硕士生。目前主要开展基于超薄金属透明电极的钙钛矿/晶硅叠层电池的性能研究。
王维燕,中国科学院宁波材料技术与工程研究所副研究员,硕士研究生导师。2009年毕业于浙江大学硅材料国家重点实验室获工学博士学位。2009年7月加入中国科学院宁波材料技术与工程研究所从事博士后工作,2013年晋升为副研究员。先后从事高效硅基薄膜太阳电池的关键材料与技术,可弯折可拉伸薄膜太阳电池等研究。目前,以第一作者在相关国际期刊发表学术论文20余篇,授权专利2项。先后主持国家自然科学基金青年基金、浙江省基金、宁波市自然科学基金等项目。
引用本文:    
李梓进, 王维燕, 李红江, 黄金华, 徐清. 钙钛矿/晶硅叠层太阳电池关键材料与技术研究进展[J]. 材料导报, 2020, 34(21): 21061-21071.
LI Zijin, WANG Weiyan, LI Hongjiang, HUANG Jinhua, XU Qing. Recent Progress on Key Material and Technology for Perovskite/Silicon Tandem Solar Cells. Materials Reports, 2020, 34(21): 21061-21071.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100064  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21061
[1] Yoshikawa K, Kawasaki H, Yoshida W, et al.Nature Energy, 2017, 2(5), 17032.
[2] Richter A, Hermle M, Glunz S W.IEEE Journal of Photovoltaics, 2013, 3(4), 1184.
[3] Hirst L C, Ekins-Daukes N J. Progress in Photovoltaics: Research and Applications, 2011, 19(3), 286.
[4] Almansouri I, Ho-Baillie A, Bremner S P, et al.IEEE Journal of Photovoltaics, 2015, 5(3), 968.
[5] Essig S, Allebé C, Remo T, et al.Nature Energy, 2017, 2(9), 17144.
[6] Werner J, Niesen B, Ballif C.Advanced Materials Interfaces, 2018, 5(1), 1700731.
[7] Lal N N, Dkhissi Y, Li W, et al.Advanced Energy Materials, 2017, 7(18), 1602761.
[8] https://www.nrel.gov/pv/cell-efficiency.html.
[9] Saliba M, Matsui T, Domanski K, et al. Science, 2016, 354(6309), 206.
[10] Williams S T, Rajagopal A, Chueh C C, et al.The Journal of Physical Chemistry Letters, 2016, 7(5), 811.
[11] Forgács D, Gil-Escrig L, Pérez-Del-Rey D, et al. Advanced Energy Materials, 2017, 7(8), 1602121.
[12] Leyden M R, Jiang Y, Qi Y. Journal of Materials Chemistry A, 2016, 4(34), 13125.
[13] Unger E L, Kegelmann L, Suchan K, et al.Journal of Materials Chemistry A, 2017, 5(23), 11401.
[14] https://www.oxfordpv.com/news/oxford-pv-perovskite-solar-cell-achieves-28-efficiency.
[15] White T P, Lal N N, Catchpole K R.IEEE Journal of Photovoltaics, 2013, 4(1), 208.
[16] Lal N N, White T P, Catchpole K R.IEEE Journal of Photovoltaics, 2014, 4(6), 1380.
[17] Almansouri I, Ho-Baillie A, Green M A.Japanese Journal of Applied Physics, 2015, 54, 08KD04.
[18] Lentine A L, Nielson G N, Okandan M, et al.IEEE Journal of Photovoltaics, 2014, 4(6), 1593.
[19] Uzu H, Ichikawa M, Hino M, et al.Applied Physics Letters, 2015, 106(1), 013506.
[20] Yamamoto K, Adachi D, Uzu H, et al.Japanese Journal of Applied Phy-sics, 2015, 54, 08KD15.
[21] Sheng R, Ho-Baillie A W Y, Huang S, et al. The Journal of Physical Chemistry Letters, 2015, 6(19), 3931.
[22] Zhengshan J Y, Fisher K C, Wheelwright B M, et al.IEEE Journal of Photovoltaics, 2015, 5(6), 1791.
[23] Li Y, Hu H, Chen B, et al.Journal of Materials Chemistry C, 2017, 5(1), 134.
[24] Yu Z, Leilaeioun M, Holman Z.Nature Energy, 2016, 1(11),16137.
[25] Lper P, Moon S J, De Nicolas S M, et al.Physical Chemistry Chemical Physics, 2015, 17(3), 1619.
[26] Bailie C D, Christoforo M G, Mailoa J P, et al.Energy & Environmental Science, 2015, 8(3), 956.
[27] Werner J, Dubuis G, Walter A, et al.Solar Energy Materials and Solar Cells, 2015, 141, 407.
[28] McMeekin D P, Sadoughi G, Rehman W, et al.Science, 2016, 351(6269), 151.
[29] Duong T, Lal N, Grant D, et al.IEEE Journal of Photovoltaics, 2016, 6(3), 679.
[30] Chen B, Bai Y, Yu Z, et al.Advanced Energy Materials, 2016, 6(19), 1601128.
[31] Werner J, Barraud L, Walter A, et al.ACS Energy Letters, 2016, 1(2), 474.
[32] Peng J, Duong T, Zhou X, et al.Advanced Energy Materials, 2017, 7(4), 1601768.
[33] Duong T, Wu Y L, Shen H, et al.Advanced Energy Materials, 2017, 7(14), 1700228.
[34] Jaysankar M, Qiu W, van Eerden M, et al.Advanced Energy Materials, 2017, 7(15), 1602807.
[35] Jaysankar M, Raul B A L, Bastos J, et al.ACS Energy Letters, 2018, 4(1), 259.
[36] Mailoa J P, Bailie C D, Johlin E C, et al.Applied Physics Letters, 2015, 106(12), 121105.
[37] Albrecht S, Saliba M, Baena J P C, et al.Energy & Environmental Science, 2016, 9(1), 81.
[38] Werner J, Weng C H, Walter A, et al.The Journal of Physical Chemistry Letters, 2015, 7(1), 161.
[39] Werner J, Walter A, Rucavado E, et al.Applied Physics Letters, 2016, 109(23), 233902.
[40] Bush K A, Palmstrom A F, Zhengshan J Y, et al.Nature Energy, 2017, 2(4), 17009.
[41] Sahli F, Kamino B A, Werner J, et al.Advanced Energy Materials, 2018, 8(6), 1701609.
[42] Sahli F, Werner J, Kamino B A, et al. Nature Materials, 2018, 17(9), 820.
[43] Zheng J, Lau C F J, Mehrvarz H, et al.Energy & Environmental Science, 2018, 11(9), 2432.
[44] Mazzarella L, Lin Y H, Kirner S, et al.Advanced Energy Materials, 2019, 9(14), 1803241.
[45] Chen B, Yu Z, Liu K, et al.Joule, 2019, 3(1), 177.
[46] Morales-Masis M, De Wolf S, Woods-Robinson R, et al. Advanced Electronic Materials, 2017, 3(5), 1600529.
[47] Fu F, Feurer T, Jger T, et al.Nature Communications, 2015, 6, 8932.
[48] Werner J, Geissbühler J, Dabirian A, et al.ACS Applied Materials & Interfaces, 2016, 8(27), 17260.
[49] Fu F, Feurer T, Weiss T P, et al.Nature Energy, 2017, 2(1), 16190.
[50] Bush K A, Bailie C D, Chen Y, et al.Advanced Materials, 2016, 28(20), 3937.
[51] Bi Y G, Liu Y F, Zhang X L, et al.Advanced Optical Materials, 2019, 7(6), 1800778.
[52] Yang Y, Chen Q, Hsieh Y T, et al.ACS Nano, 2015, 9(7), 7714.
[53] Guo F, Azimi H, Hou Y, et al.Nanoscale, 2015, 7(5), 1642.
[54] Ahn J, Hwang H, Jeong S, et al.Advanced Energy Materials, 2017, 7(15), 1602751.
[55] Behrouznejad F, Shahbazi S, Taghavinia N, et al. Journal of Materials Chemistry A, 2016, 4(35), 13488.
[56] Lang F, Gluba M A, Albrecht S, et al.The Journal of Physical Chemistry Letters, 2015, 6(14), 2745.
[57] You P, Liu Z, Tai Q, et al.Advanced Materials, 2015, 27(24), 3632.
[58] Lang F, Gluba M A, Albrecht S, et al. Physica Status Solidi (A), 2016, 213(7), 1989.
[59] Dominé D, Buehlmann P, Bailat J, et al.Physica Status Solidi (RRL)–Rapid Research Letters, 2008, 2(4), 163.
[60] Sderstrm T, Haug F J, Niquille X, et al. Applied Physics Letters, 2009, 94(6), 063501.
[61] Slotcavage D J, Karunadasa H I, McGehee M D.ACS Energy Letters, 2016, 1(6), 1199.
[62] Saliba M, Matsui T, Domanski K, et al.Science, 2016, 354(6309), 206.
[63] Saliba M, Matsui T, Seo J Y, et al.Energy & Environmental Science, 2016, 9(6), 1989.
[64] Bush K A, Frohna K, Prasanna R, et al.ACS Energy Letters, 2018, 3(2), 428.
[65] Unger E L, Kegelmann L, Suchan K, et al.Journal of Materials Chemistry A, 2017, 5(23), 11401.
[66] Lin Y, Chen B, Zhao F, et al.Advanced Materials, 2017, 29(26), 1700607.
[67] Yu Y, Wang C, Grice C R, et al.ACS Energy Letters, 2017, 2(5), 1177.
[68] Zhou Y, Wang F, Cao Y, et al.Advanced Energy Materials, 2017, 7(22),1701048.
[69] Wang Z, Lin Q, Chmiel F P, et al.Nature Energy, 2017, 2(9), 17135.
[70] Kim J, Saidaminov M I, Tan H, et al.Advanced Materials, 2018, 30(13), 1706275.
[71] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, et al.Nature, 2018, 555(7697), 497.
[72] Gharibzadeh S, Abdollahi Nejand B, Jakoby M, et al.Advanced Energy Materials, 2019, 9(21), 1803699.
[73] Jger K, Korte L, Rech B, et al.Optics Express, 2017, 25(12), A473.
[74] Santbergen R, Mishima R, Meguro T, et al.Optics Express, 2016, 24(18), A1288.
[75] Jot M, Khnen E, Morales-Vilches A B, et al.Energy & Environmental Science, 2018, 11(12), 3511.
[76] Shi D, Zeng Y, Shen W.Scientific Reports, 2015, 5, 16504.
[77] Jaysankar M, Filipicˇ M, Zielinski B, et al.Energy & Environmental Science, 2018, 11(6), 1489.
[1] 安世崇,黄茜,陈沛润,张力,赵颖,张晓丹. 半透明钙钛矿及叠层太阳电池中的透明电极研究综述[J]. 材料导报, 2020, 34(3): 3069-3079.
[2] 罗国平, 张漫虹, 梁铨斌, 陈冬, 陈星源, 李天乐, 朱伟玲. 射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响[J]. 材料导报, 2020, 34(12): 12020-12024.
[3] 李志航, 宁洪龙, 李晓庆, 陶瑞强, 刘贤哲, 蔡炜, 陈建秋, 王磊, 姚日晖, 彭俊彪. 基于多成核机制的银纳米线制备研究[J]. 材料导报, 2019, 33(z1): 303-306.
[4] 唐燕, 阮海波, 蒲勇, 张进. 铜纳米线复合透明电极的构筑及应用研究进展[J]. 材料导报, 2018, 32(19): 3423-3434.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed