Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21072-21080    https://doi.org/10.11896/cldb.19070275
  无机非金属及其复合材料 |
SnO2应用于钙钛矿太阳电池电子传输层的研究进展
刘壮, 陈建林*, 彭卓寅, 陈荐
长沙理工大学能源与动力工程学院,能源高效清洁利用湖南省高校重点实验室,长沙 410114
Progress of SnO2 as Electron Transport Layer for Perovskite Solar Cells
LIU Zhuang, CHEN Jianlin*, PENG Zhuoyin, CHEN Jian
Key Laboratory of Efficient and Clean Energy Utilization, Colleges of Hunan Province, School of Energy Science & Engineering, Changsha University of Science and Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 7800KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钙钛矿太阳电池(PSCs)自2009年问世以来,其最高光电转换效率(PCE)已达到25.2%,其中电子传输层(ETLs)对电池的性能和稳定性至关重要。目前使用最多的ETLs材料为TiO2,但它仍存在一些缺点:(1)TiO2/钙钛矿界面之间存在电荷势垒,导致界面间存在较多的电荷累积,从而致使界面电荷转移效率低;(2)TiO2具有较高的紫外光催化活性,长期在紫外光照射下会导致钙钛矿分解;(3)TiO2常需要500 ℃左右的高温烧结以提高其结晶性,因此不利于在有机柔性衬底上制备。
SnO2作为一种 n 型无机半导体材料,具有宽禁带、高透光性、高导电率、高电子迁移率、低温制备等优点,近年来已被广泛地研究替代传统的TiO2作为PSCs的ETLs。SnO2的制备方法很多,但目前应用于PSCs中的主要方法包括一般溶液法、溶胶-凝胶法、化学浴沉积法等,这些制备工艺较为简单,且能够在低温下合成。
采用传统制备方法合成的单一ETLs,例如TiO2、ZnO、SnO2等,虽然应用在PSCs中取得了不错的效果,但也存在薄膜覆盖性差,有明显针孔、界面缺陷以及不稳定等问题。因此,很多研究者尝试制备复合ETLs,例如TiO2/SnO2、ZnO/SnO2、SnO2/SnO2等,以达到互补效应。虽然SnO2本身具有十分优异的光电特性,但界面能级匹配与物理接触可能并非最优,不适当的制备工艺会导致薄膜出现明显的缺陷而成为载流子复合中心,从而引起PCE下降。通过提高电子的抽取与传输能力,向SnO2中掺入一些金属离子,可达到让SnO2与钙钛矿吸光层能级更加匹配的目的,常用的金属离子包括Li+、Mg2+、Al3+、Y3+、Sb3+、Nb5+等。为了改善SnO2薄膜的质量与表面态,减少表面缺陷,优化界面物理接触,常采用一些材料对SnO2薄膜表面进行钝化,从而减少界面与表面的复合中心,增强电子的传输能力,改善电池性能。
本文首先介绍了SnO2的晶格结构和特性,然后从SnO2的单一电子层、复合电子层、元素掺杂、界面钝化等角度,总结了SnO2作为PSCs电子传输层的制备方法、策略、机理以及近年来的研究进展,指出低温制备高质量SnO2-ETLs为高效PSCs器件实现柔性化提供了可能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘壮
陈建林
彭卓寅
陈荐
关键词:  SnO2  钙钛矿太阳电池  电子传输层    
Abstract: Perovskite solar cells (PSCs) have achieved the highest photovoltaic conversion efficiency (PCE) of 25.2% since their introduction in 2009, in which the electron transport layers (ETLs) are crucial for the performance and stability of the cells. Currently, titanium dioxide is the most widely used ETL material, but it still has some disadvantages : (1) there is a charge barrier between titanium dioxide/perovskite interfaces, which leads to a large amount of charge accumulation between the interfaces, resulting in low efficiency of charge transfer at the interfaces; (2) titanium dioxide has a high UV photo-catalytic activity, which will lead to the decomposition of perovskite under UV irradiation for a long time; (3) titanium dioxide usually needs high-temperature sintering at around 500 ℃ to improve its crystallinity, so it is not conducive to preparation on organic flexible substrates.
As an n-type inorganic semiconductor material, tin dioxide has the advantages of wide bandgap, high light transmittance, high conductivity, high electron mobility, low temperature preparation, etc. In recent years, it has been widely studied to replace commonly used titanium dioxide as the ETLs of PSCs. There are various preparation methods for tin dioxide applied in PSCs. The commonly used methods include general solution method, sol-gel method, chemical bath deposition method, etc. These processes of preparing tin dioxide are relatively simple and can be conducted at relatively low temperatures.
Single ETLs prepared by traditional methods, such as titanium dioxide, zinc oxide, tin oxide, etc., have achieved good results in PSCs, but there are also problems such as poor coverage, obvious pinholes, interface defects, and instability, which lead to decreased device performance. Therefore, many researchers tried to prepare double ETLs, such as titanium dioxide/tin oxide, zinc oxide/tin oxide, tin oxide/tin oxide, etc., so as to achieve complementary effect. Although tin oxide itself has very excellent photoelectric characteristics, the interface level matching and phy-sical contact may not be optimal. Improper preparation process leads to obvious defects in the film and becomes carrier recombination centers, which leads to the decrease of PCE. In order to better match the energy levels of tin oxide and perovskite and improve the extraction and transfer ability of electrons, some metal ions are added to tin oxide for this purpose. Commonly used metal ions include Li+, Mg2+, Al3+, Y3+, Sb3+, Nb5+, etc. In order to improve the quality and surface state of tin oxide films, reduce surface defects and optimize interface physical contact, some materials are often used to passivate the surface of tin oxide grains, so as to reduce the recombination centers of interfaces and surfaces and enhance electron transfer ability, promoting the device performance.
In this paper, the lattice structure and properties of tin oxide are introduced, and the preparation methods, strategies and mechanism of tin oxide as PSCs ETLs are summarized from the perspective of single electron layer, double electron layer, element-doping, and interface passivation. It is pointed out that the high quality tin oxide ETLs prepared at low temperatures provide the possibility for high efficiency flexible PSCs.
Key words:  SnO2    perovskite solar cells    electron transport layer
               出版日期:  2020-11-10      发布日期:  2020-11-17
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51172031);国家留学基金委留金发(2017(3059)-201708430061);长沙理工大学“双一流”科学研究国际合作拓展项目(2018IC15)
作者简介:  刘壮,2018年6月毕业于长沙理工大学,获得工学学士学位。现为长沙理工大学能源与动力工程学院研究生,在陈建林副教授的指导下进行研究。目前主要研究领域为柔性钙钛矿太阳电池。
陈建林,长沙理工大学能源与动力工程学院副教授、硕士研究生导师、湖南省可再生能源学会副会长。1999年6月本科毕业于桂林工学院,2009年9月博士毕业于湖南大学材料科学与工程专业, 2017年12月—2018年12月国家公派美国明尼苏达大学作访问学者。主要从事太阳能转换与利用、新能源材料方面的研究,主持国家自然科学基金项目1项,发表学术论文40余篇,其中SCI收录25篇、EI收录6篇。
引用本文:    
刘壮, 陈建林, 彭卓寅, 陈荐. SnO2应用于钙钛矿太阳电池电子传输层的研究进展[J]. 材料导报, 2020, 34(21): 21072-21080.
LIU Zhuang, CHEN Jianlin, PENG Zhuoyin, CHEN Jian. Progress of SnO2 as Electron Transport Layer for Perovskite Solar Cells. Materials Reports, 2020, 34(21): 21072-21080.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070275  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21072
[1] Stranks S D, Eperon G E, Grancini G, et al. Science, 2013, 342(6156),341.
[2] Yin W J, Shi T T, Yan Y F.Advanced Materials Interfaces, 2014, 26(27),4653.
[3] Bakr Z H, Wali Q, Fakharuddin A, et al. Nano Energy, 2017, 34,271.
[4] Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131(17),6050.
[5] https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.
20 190923.pdf.
[6] Jiang Q, Zhang X W, You J B. Small, 2018, 14(31),1801154.
[7] Yang Y Q, Wu, J H, Guo P F, et al.Journal of Materials Science Mate-rials in Electronics, 2018, 29(15),13138.
[8] Mahmud M A, Elumalai N K, Upama M B, et al.Solar Energy Materials and Solar Cells, 2017, 159,251.
[9] Liu J, Gao C, Luo L Z, et al.Journal of Materials Chemistry A, 2015, 3(22),11750.
[10] Wang L, Fu W L, Gu Z W, et al. Journal of Materials Chemistry C, 2014, 2(43),9087.
[11] Wang K, Shi Y T, Dong Q S, et al. The Journal of Physical Chemistry Letters, 2015, 6(5),755.
[12] Bai Y,Yang B,Wang F Z, et al. Organic Electronics, 2018, 52,323.
[13] Shin S S, Yeom E J, Yang W S, et al.Science, 2017, 356(6334),167.
[14] Bera A, Wu K, Sheikh A, et al.The Journal of Physical Chemistry C, 2014, 118(49),28494.
[15] Liu D, Kelly T L.Nature Photonics, 2013, 8(2),133.
[16] Dunlap-Shohl W A, Younts R, Gautam B, et al.The Journal of Physical Chemistry C, 2016, (120),16437.
[17] You J B, Hong Z R, Yang Y, et al. ACS Nano, 2014, 8(2),1674.
[18] Hu H, Wang D, Zhou Y Y, et al. RSC Advances, 2014, 4(55),28964.
[19] Jeng J Y, Chiang Y F, Lee M H, et al.Advanced Materials, 2013, 25(27),3727.
[20] Wang Q, Shao Y C, Dong Q F, et al.Energy & Environmental Science, 2014, 7(7),2359.
[21] Liu D T, Wang Y F, Xu H, et al. Solar RRL, 2019, 3(2),1800292.
[22] Zhao J J, Wei L Y, Liu J X, et al. Science China Materials, 2017, 60(3),208.
[23] Xie H X, Yin X T, Chen P, et al.Materials Letters, 2019, 234,311.
[24] Liu Q, Qin M C, Ke W J, et al. Advanced Functional Materials, 2016, 26(33),6069.
[25] Murugadoss G, Kanda H, Tanaka S, et al. Journal of Power Sources, 2016, 307,891.
[26] Galazka Z, Uecker R, Klimm D, et al. Physica Status Solidi, 2014, 211(1),66.
[27] Shen Q, Mao W, Han L, et al.Optical Materials, 2019, 94,21.
[28] Ayguler M F, Hufnagel A G, Rieder P, et al. ACS Applied Materials & Interfaces, 2018, 10(14),11414.
[29] Bi Z, Zhao X, Qian Y, et al. Chinese Chemical Letters, 1992,7,565.
[30] Li Q, Fu J J, Zhu W L, et al.Journal of the American Chemical Society, 2017, 139(12),4290.
[31] Tripathi A, Mitra S. RSC Advances, 2013, 3(42),19423.
[32] Pereira M S, Lima F A S, Ribeiro T S, et al. Optical Materials, 2017, 64,548.
[33] Tran V H, Ambade R B, Ambade S B, et al. ACS Applied Materials & Interfaces, 2017, 9(2),1645.
[34] Docampo P, Tiwana P, Sakai N, et al. Journal of Physical Chemistry C, 2015, 116(43),22840.
[35] Abdalla J T, Huang Y W, Yu Q J, et al. Materials & Processing Report, 2017, 32(7),443.
[36] Asdim, Manseki K, Sugiura T, et al. New Journal of Chemistry, 2014, 38(2),598.
[37] Zhou Y, Xia C, Hu X Y, et al. Applied Surface Science, 2014, 292,111.
[38] Ke W J, Fang G J, Liu Q, et al. Journal of the American Chemical Society, 2015, 137(21),6730.
[39] Ke W J, Zhao D W, Cimaroli A J, et al. Journal of Materials Chemistry A, 2015, 3(47),24163.
[40] Anaraki E H, Kermanpur A, Steier L, et al. Energy & Environmental Science, 2016, 9(10),3128.
[41] Jung K H, Seo J Y, Lee S, et al. Journal of Materials Chemistry A, 2017, 5(47),24790.
[42] Yang G, Chen C, Yao F, et al. Advanced Materials, 2018, 30(14),1706023.
[43] Dong Q S, Xue Y, Wang S, et al. Science China Materials, 2017, 60(10),963.
[44] Dong Q S, Shi Y T, Zhang C Y, et al. Nano Energy, 2017, 40,336.
[45] Barbe J, Tietze M L, Neophytou M, et al.ACS Applied Materials & Interfaces, 2017, 9(13),11828.
[46] Shin S S, Yang W S, Yeom E J, et al. The Journal of Physical Chemistry Letters, 2016, 7(10),1845.
[47] Chen J Y, Chueh C C, Zhu Z L, et al. Solar Energy Materials and Solar Cells, 2017, 164,47.
[48] Liu X, Tsai K W, Zhu Z L, et al. Advanced Materials Interfaces, 2016, 3(13),1600122.
[49] Kim M G, Kanatzidis M G, Facchetti A, et al. Nature Materials, 2011, 10(5),382.
[50] Meng X B, Zhang Y, Sun S H, et al. Journal of Materials Chemistry, 2011, 21(33),12321.
[51] Kavan L, Steier L, Gratzel M. The Journal of Physical Chemistry C, 2017, 121(1),342.
[52] Wang C L, Zhao D W, Grice C R, et al. Journal of Materials Chemistry A, 2016, 4(31),12080.
[53] Chen Z L, Yang G, Zheng X L, et al. Journal of Power Sources, 2017, 351,123.
[54] Ma J J, Zheng X L, Lei H W, et al. Solar RRL, 2017, 1(10),1700118.
[55] Song J X, Zheng E Q, Wang X F, et al. Solar Energy Materials and Solar Cells,2016,144,623.
[56] Huang X K, Hu Z Y, Xu J, et al. Solar Energy Materials and Solar Cells, 2017, 164,87.
[57] Xie H X, Yin X T, Liu J, et al. Applied Surface Science, 2019, 464,700.
[58] Song S, Kang G, Pyeon L, et al. ACS Energy Letters, 2017, 2(12),2667.
[59] Ding B, Huang S Y, Chu Q Q, et al. Journal of Materials Chemistry A, 2018, 6(22),10233.
[60] Ko Y, Kim Y, Kong S Y, et al. Solar Energy Materials and Solar Cells, 2018, 183,157.
[61] Wang P, Zhao J J, Liu J X, et al. Journal of Power Sources, 2017, 339,51.
[62] Wang D, Wu C C, Luo W, et al. ACS Applied Energy Materials, 2018, 1(5),2215.
[63] Yi H M, Wang D, Mahmud M A, et al. ACS Applied Energy Materials, 2018, 1(11),6027.
[64] Gong X, Sun Q, Liu S S, et al. Nano Letters, 2018, 18(6),3969.
[65] Bahadur J, Ghahremani A H, Martin B, et al. Organic Electronics, 2019, 67,159.
[66] Ye H B, Liu Z Y, Liu X Y, et al. Applied Surface Science, 2019, 478,417.
[67] Chen Y, Xu C, Xiong J, et al.Organic Electronics, 2018, 58,294.
[68] Liu X P, Bu T L, Li J, et al. Nano Energy, 2018, 44,34.
[69] Xu Z H, Teo S H, Gao L G, et al. Organic Electronics, 2019, 73,62.
[70] Tao R, Zhang Y Z, Jin Z B, et al. Electrochimica Acta, 2018, 284,10.
[71] Park M, Kim J Y, Son H J, et al. Nano Energy, 2016, 26,208.
[72] Chen H, Liu D T, Wang Y F, et al. Nanoscale Research Letters, 2017, 12(1),238.
[73] Xiong L B, Qin M C, Yang G, et al. Journal of Materials Chemistry A, 2016, 4(21),8374.
[74] Yang G, Lei H W, Tao H, et al. Small, 2017, 13(2),201601769.
[75] Bai Y, Fang Y J, Deng Y H, et al. ChemSusChem, 2016, 9(18),1.
[76] Anaraki E H, Kermanpur A, Mayer M T, et al.ACS Energy Letters, 2018, 3(4),773.
[77] Liu J, Li N, Dong Q S, et al. Science China Materials, 2018, 2(62),173.
[78] Ren X D, Yang D, Yang Z, et al. ACS Applied Materials & Interfaces, 2017, 9(3),2421.
[79] Bu T L, Li J, Zheng F, et al. Nature Communications, 2018, 9(1),4609.
[80] Ke W J, Zhao D W, Xiao C X, et al. Journal of Materials Chemistry A, 2016, 4(37),14276.
[81] Mahmood K, Khalid A, Nawaz F, et al. Journal of Colloid and Interface Science, 2018, 532,387.
[1] 安世崇,黄茜,陈沛润,张力,赵颖,张晓丹. 半透明钙钛矿及叠层太阳电池中的透明电极研究综述[J]. 材料导报, 2020, 34(3): 3069-3079.
[2] 杨飞, 周丹, 秦元成, 徐海涛, 张余宝, 张芹, 谢宇, 李明俊. 有机太阳能电池电子传输层材料研究进展[J]. 材料导报, 2020, 34(11): 11081-11089.
[3] 王鹏飞, 邓宇, 郝丽梅, 邓橙, 赵蕾, 张新奇, 朱孟府. 铋掺杂二氧化锡/炭膜电催化膜的制备及表征[J]. 材料导报, 2019, 33(18): 3016-3020.
[4] 甘一升, 陈苗苗, 王玉龙, 万丽, 孔梦琴, 胡航, 王世敏. 以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池[J]. 材料导报, 2018, 32(23): 4047-4050.
[5] 张显峰, 赵朝成, 王德军, 赵媛媛, 张勇, 郭锐. 基于SnO2/Fe3O4粒子电极的三维电极体系的电催化性能*[J]. 《材料导报》期刊社, 2017, 31(8): 25-30.
[6] 刘源, 唐鹏, 张静全, 武莉莉, 李卫, 王文武, 冯良桓. N离子注入改性SnO2缓冲层及其CdTe太阳电池应用*[J]. 《材料导报》期刊社, 2017, 31(17): 152-157.
[7] 戎小莹, 金慧娇, 张天, 郭丹, 赵昆越, 田汉民. 钙钛矿太阳电池的理论性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 33-40.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed