Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11081-11089    https://doi.org/10.11896/cldb.19020010
  无机非金属及其复合材料 |
有机太阳能电池电子传输层材料研究进展
杨飞1, 周丹1, 秦元成1, 徐海涛2, 张余宝3, 张芹3, 谢宇1, 李明俊1
1 南昌航空大学环境与化学工程学院,南昌 330063
2 南昌航空大学材料科学与工程学院,南昌 330063
3 南昌航空大学测试与光电工程学院,南昌 330063
Research Progress of Electron Transport Layer Materials for Organic Solar Cells
YANG Fei1, ZHOU Dan1, QIN Yuancheng1, XU Haitao2, ZHANG Yubao3, ZHANG Qin3, XIE Yu1, LI Mingjun1
1 School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
2 College of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
3 School of Measuring and Optical Engineering, Nanchang Hangkong University, Nanchang 330063, China
下载:  全 文 ( PDF ) ( 4435KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着人类社会的不断进步和科学技术的迅猛发展,太阳能作为一种可再生能源在如今资源匮乏的年代备受关注。太阳能具有成本低廉、储量丰厚、利用简单等诸多优点,吸引了众多学者竞相研究探索。有机太阳能电池作为新一代固态薄膜电池,因其可溶液加工、卷对卷印刷和打印制备成柔性器件,向已经商业化但价格昂贵的无机硅太阳能电池发起了革命性的挑战。在现阶段,有机太阳能电池还存在稳定性相对较弱和光电转换效率相对偏低两方面的缺陷。尽管已报道的有机太阳能电池的光电转换效率已经达到16.70%,但离商业化生产还有很大距离。
   电子传输层在器件中发挥着重要的作用,对有机太阳能电池的光电转换效率和稳定性有重要影响。目前,应用于有机太阳能电池的电子传输层材料主要为金属氟化物、n型金属氧化物、有机小分子类、聚合物电解质类和富勒烯类等。在众多电子传输层材料中,有机类电子传输层因其结构可调、可溶液加工、便于大面积印刷等优势而备受关注。
   本文对有机类电子传输层材料进行了归纳总结,包含聚芴类、聚噻吩类、苝酰亚胺类、富勒烯类。通过阐述已有的研究进展,对比分析各种电子传输层材料的优劣,展望电子传输层材料的发展趋势和研究前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨飞
周丹
秦元成
徐海涛
张余宝
张芹
谢宇
李明俊
关键词:  有机太阳能电池  电子传输层材料  界面工程    
Abstract: With the continuous progress of human society and the rapid development of science and technology, as a kind of renewable energy, solar energy has attracted much attention in the era of resource shortage. Due to its advantages such as low cost, abundant reserves and simple use, solar energy has attracted many researchers to study and explore. As a new generation of solid-state thin-film cells, organic solar cells have presented a revolutionary challenge to the expensive commercialized inorganic silicon solar cells by their application prospects of solution processing, roll-to-roll printing and printing to fabricate flexible devices. However, at the present stage, organic solar cells still have the defects of relatively weak stability and low power conversion efficiency. Although the reported power conversion efficiency of organic solar cells has reached 16.70%, it is still a long way for realizing their commercial application.
Electron transport layer plays an important role in the device and exerts asignificant influence on the power conversion efficiency and stability of the organic solar cells. At present, the electron transport materials used in organic solar cells are mainly metal fluorides, n-type metal oxides, organic small molecules, polymer electrolytes and fullerenes. Among these electron transport materials, organic electron transport layer materials have attracted much attentive because of their adjustable structure, soluble processing and large area printing, etc.
In this paper,organic electron transport materials are summarized, including polyfluorenes, poly-thiophenes, phthalimides and fullerenes. The purpose is to illustrate the existing research progress, compare and analyze the advantages and disadvantages of various electronic transport materials, and prospect the development trend and research prospect of electronic transport materials.
Key words:  organic solar cells    electron transport material    interfacial engineering
                    发布日期:  2020-05-13
ZTFLH:  TM914.4  
基金资助: 国家自然科学基金(21965023;21965022;51703091;51663018;51863016;61765011);江西省自然科学基金(20181BAB216012;20181BCB18003;20181BBE58005;20171ACB20016;20172BCB22014);江西省教育厅科学技术项目(GJJ170614;GJJ170589);南昌航空大学博士启动基金(EA2017024842)
通讯作者:  zhoudan@nchu.edu.cn   
作者简介:  杨飞,2018年6月毕业于宜春学院,获得理学学士学位。现为南昌航空大学环境与化学工程学院硕士研究生,在周丹老师的指导下进行研究。目前主要研究领域为有机太阳能电池电子传输层材料。
周丹,南昌航空大学环境与化学工程学院,硕士研究生导师。2007年7月本科毕业于南昌大学化学系,2010年6在南昌大学有机化学专业取得硕士学位,2017年6月在南昌大学化学专业获得博士学位。主要从事有机太阳能电池界面工程与器件制备的研究工作。
引用本文:    
杨飞, 周丹, 秦元成, 徐海涛, 张余宝, 张芹, 谢宇, 李明俊. 有机太阳能电池电子传输层材料研究进展[J]. 材料导报, 2020, 34(11): 11081-11089.
YANG Fei, ZHOU Dan, QIN Yuancheng, XU Haitao, ZHANG Yubao, ZHANG Qin, XIE Yu, LI Mingjun. Research Progress of Electron Transport Layer Materials for Organic Solar Cells. Materials Reports, 2020, 34(11): 11081-11089.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020010  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11081
1 Wright M, Uddin A.Solar Energy Materials and Solar Cells, 2012, 107, 87.
2 Tang C W.Applied Physics Letters, 1986, 48(2), 183.
3 Li G, Zhu R, Yang Y.Nature Photonics, 2012, 6(3), 153.
4 Duan C, Zhang K, Zhong C, et al.Chemical Society Reviews, 2013, 42(23), 9071.
5 Sun K, Zhao B, Kumar A, et al.ACS Applied Materials & Interfaces, 2012, 4(4), 2009.
6 Sun K, Zhao B, Murugesan V, et al.Journal of Materials Chemistry, 2012, 22(45), 24155.
7 Murugesan V, Sun K, Ouyang J.Applied Physics Letters, 2013, 102(8), 083302.
8 Zhou D, Cheng X, Xu H, et al.Journal of Materials Chemistry A, 2016, 4(47), 18478.
9 Yuan J, Zhang Y, Zhou L, et al.Joule, 2019, 3(4), 1140.
10 Zhang S, Qin Y, Zhu J, et al.Advanced Materials, 2018, 30(20), 1800868.
11 Cui Y, Zhang S, Liang N, et al.Advanced Materials, 2018, 30(34), 1802499.
12 Wu W, Zhang G, Xu X, et al. Advanced Functional Materials, 2018, 28(18), 1707493.
13 Zhou D, Xiong S, Chen L, et al.Chemical Communications, 2018, 54(5), 563.
14 Pan M, Lau T K, Tang Y, et al.Journal of Materials Chemistry A, 2019,7, 20713.
15 Yu R, Yao H, Cui Y, et al.Advanced Materials, 2019, 1902302.
16 Na S I, Oh S H, Kim S S, et al. Organic Electronics, 2009, 10(3), 496.
17 Zhao Y, Xie Z, Qin C, et al.Solar Energy Materials and Solar Cells, 2009, 93(5), 604.
18 Seung-Hwan Oh, Seok-In Na, Jang Jo, et al. Advanced Functional Materials, 2010, 20(12), 1977.
19 Chen L, Xie C, Chen Y. Organic Electronics, 2013, 14(6), 1551.
20 Yao S, Li P, Bian J, et al. Journal of Materials Chemistry A, 2013, 1(37), 11443.
21 Chen D, Zhou H, Liu M, et al.Macromolecular Rapid Communications, 2013, 34(7), 595.
22 Xiao H, Miao J, Cao J, et al. Organic Electronics, 2014, 15(3), 758.
23 Do T T, Hong H S, Ha Y E, et al. Synthetic Metals, 2014, 198, 122.
24 Wu N, Luo Q, Bao Z, et al.Solar Energy Materials and Solar Cells, 2015, 141, 248.
25 Li X, Liu J, Tang X, et al. Organic Electronics, 2015, 25, 105.
26 Kan Y, Zhu Y, Liu Z, et al.Macromolecular Rapid Communications, 2015, 36(15), 1393.
27 Liu C, Zhang X, Li Z, et al. The Journal of Physical Chemistry C, 2015, 119(29), 16462.
28 Do T T, Hong H S, Ha Y E, et al. Macromolecular Research, 2015, 23(4), 367.
29 Zhao L, Wang X, Li X, et al. Solar Energy Materials and Solar Cells, 2016, 157, 79.
30 Yuan L, Li J, Wang Z, et al.ACS Applied Materials & Interfaces, 2017, 9(49), 42961.
31 Lv M, Jasieniak J J, Zhu J, et al.RSC Advances, 2017, 7(45), 28513.
32 Li Z, Liu C, Guo J, et al. Organic Electronics, 2018, 63, 129.
33 Carulli F, Mróz W, Lassi E, et al. Chemical Papers, 2018, 1.
34 Yao K, Chen L, Chen Y, et al.Journal of Materials Chemistry, 2011, 21(36), 13780.
35 Liu Y, Page Z A, Russell T P, et al.Angewandte Chemie International Edition, 2015, 54(39), 11485.
36 Lanzi M, Salatelli E, Giorgini L, et al. European Polymer Journal, 2017, 97, 378.
37 Chakravarthi N, Aryal U K, Gunasekar K, et al.ACS Applied Materials & Interfaces, 2017, 9(29), 24753.
38 Brebels J, Kesters J, Defour M, et al.Polymer, 2018, 137, 303.
39 Zhang Z G, Qi B, Jin Z, et al. Energy & Environmental Science, 2014, 7(6), 1966.
40 Li M, Lv J, Wang L, et al.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469, 326.
41 Nian L, Zhang W, Wu S, et al.ACS Applied Materials & Interfaces, 2015, 7(46), 25821.
42 Xie Z, Xiao B, He Z, et al.Materialien Horizonte, 2015, 2(5), 514.
43 Huang J, Gu Z, Zuo L, et al. Solar Energy, 2016, 133, 331.
44 Wang B, Zhang Z, Ye S, et al. Electrochimica Acta, 2016, 218, 263.
45 Yu J, Xi Y, Chueh C C, et al.Advanced Materials Interfaces, 2016, 3(18), 1600476.
46 Fan P, Zheng Y, Song J, et al.Solar Energy, 2017, 158, 278.
47 Miao J, Hu Z, Liu M, et al. Organic Electronics, 2018, 52, 200.
48 Ma W, Luo Y, Nian L, et al. ACS Applied Materials & Interfaces, 2018, 10(12), 10513.
49 Zhang Z G, Li H, Qi B, et al.Journal of Materials Chemistry A, 2013, 1(34), 9624.
50 Qu S, Li M, Xie L, et al. ACS Nano, 2013, 7(5), 4070.
51 Li C Z, Chang C Y, Zang Y, et al. Advanced Materials, 2014, 26(36), 6262.
52 Sun C, Li X, Wang G, et al. RSC Advances, 2014, 4(37), 19529.
53 Wang N, Sun L, Zhang X, et al. RSC Advances, 2014, 4(49), 25886.
54 Hu T, Chen L, Yuan K, et al. Nanoscale, 2015, 7(20), 9194.
55 Zhen J, Liu Q, Chen X, et al. Journal of Materials Chemistry A, 2016, 4(21), 8072.
56 Hu T, Jiang P, Chen L, et al. Organic Electronics, 2016, 37, 35.
57 Liu Q, Zhen J, Zhou W, et al.Organic Electronics, 2016, 39, 191.
58 Li J, Zhao F, Wang T, et al. Journal of Materials Chemistry A, 2017, 5(3), 947.
59 Li D, Liu Q, Zhen J, et al. ACS Applied Materials & Interfaces, 2017, 9(3), 2720.
60 Kimoto Y, Akiyama T, Fujita K.Japanese Journal of Applied Physics, 2017, 56(2), 021601.
61 Wang Y, Cong H, Yu B, et al.Materials, 2017, 10(9), 1064.
62 Liu J, Li J, Liu X, et al. ACS Applied Materials & Interfaces, 2018, 10(3), 2649.
[1] 林珊, 史永堂, 王盈盈, 逄贝莉. 利用石墨烯基空穴传输层提升有机太阳能电池性能[J]. 材料导报, 2019, 33(12): 1945-1948.
[2] 曾祥花, 李战峰, 任静琨, 刘伟鹏, 陈今波, 王向坤, 郝玉英. 基于噻吩-苯非对称单元的DPP类聚合物给体材料的合成及光伏性能[J]. 《材料导报》期刊社, 2018, 32(9): 1423-1426.
[3] 周丹, 秦元成, 徐海涛, 李明俊. 有机太阳能电池阴极界面层概述[J]. 材料导报, 2018, 32(13): 2143-2150.
[4] 任静琨, 刘伟鹏, 李战峰, 孙钦军, 王华, 史方, 郝玉英. 新型三元聚合物给体材料的合成及在有机太阳能电池中的应用*[J]. 《材料导报》期刊社, 2017, 31(17): 133-137.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed