Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (9): 1423-1426    https://doi.org/10.11896/j.issn.1005-023X.2018.09.005
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
基于噻吩-苯非对称单元的DPP类聚合物给体材料的合成及光伏性能
曾祥花,李战峰,任静琨,刘伟鹏,陈今波,王向坤,郝玉英
太原理工大学物理与光电工程学院,新型传感器与智能控制教育部 山西省 重点实验室,太原 030024
Synthesis and Photovoltaic Performance of the Asymmetric Polymer of a Thiophene-Benzene Unit-contained Diketopyrrolopyrrole (DPP)Derivative Used for Donor Material of Organic Solar Cells
ZENG Xianghua, LI Zhanfeng, REN Jingkun, LIU Weipeng, CHEN Jinbo,WANG Xiangkun, HAO Yuying
Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024
下载:  全 文 ( PDF ) ( 1392KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了优化聚合物太阳能电池的光伏性能,设计合成了一种基于噻吩-苯非对称单元的二酮吡咯并[3,4-c]吡咯(DPP)类聚合物给体材料(PDPP-PT)。非对称结构的设计使得该聚合物具有较好的分子堆积,有利于器件的制备。该聚合物具有范围在300~900 nm的宽吸收光谱、1.5 eV的窄光学带隙。在器件性能方面,活性层厚度达260 nm时,测得开路电压(Voc)为0.68 V,光电转换效率(PCE)为1.51%。因此,PDPP-PT给体材料在制备厚活性层太阳能电池时具有一定的优势并为聚合物给体材料的分子设计提供了一种新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾祥花
李战峰
任静琨
刘伟鹏
陈今波
王向坤
郝玉英
关键词:  非对称  聚合物给体材料  有机太阳能电池  聚合物太阳能电池  二酮吡咯并吡咯(DPP)    
Abstract: A novel donor material for organic solar cells — the polymer of a diketopyrrolo[3,4-c]pyrrole (DPP) derivative that contains thiophene-benzene asymmetric unit (namely PDPP-PT) was designed and synthesized with the aim of optimizing the photovoltaic performance of polymer solar cells. The introduction of the asymmetric structure endows the polymer with better mole-cular packing, which is beneficial to device fabrication. This novel polymer has a wide absorption window ranging from 300 nm to 900 nm and a narrow optical band gap of 1.5 eV. The corresponding solar cells featured an open-circuit voltage of 0.68 V and a power conversion efficiency (PCE) of 1.51% with 260 nm thick active layer. Hence, the PDPP-PT exhibits advantages in the fabrication of thick-active-layer solar cells, and can provide a new idea for molecular design of polymer donor materials.
Key words:  asymmetry    polymer donor    organic solar cell    polymer solar cell    diketopyrrolopyrrole (DPP)
               出版日期:  2018-05-10      发布日期:  2018-07-06
ZTFLH:  TM914.4  
基金资助: 国家自然科学基金(61308093;61571317;61274056;11504257;61475109);博士点新教师基金(20131402120020); 中国博士后科学基金(2015M572454)
通讯作者:  李战峰:通信作者,男,1978年生,博士,副教授,研究方向为有机光电子材料 E-mail:lzhf78@163.com   
作者简介:  曾祥花:女,1992年生,硕士,研究方向为有机光电材料的合成与表征 E-mail:1973528508@qq.com
引用本文:    
曾祥花, 李战峰, 任静琨, 刘伟鹏, 陈今波, 王向坤, 郝玉英. 基于噻吩-苯非对称单元的DPP类聚合物给体材料的合成及光伏性能[J]. 《材料导报》期刊社, 2018, 32(9): 1423-1426.
ZENG Xianghua, LI Zhanfeng, REN Jingkun, LIU Weipeng, CHEN Jinbo, WANG Xiangkun, HAO Yuying. Synthesis and Photovoltaic Performance of the Asymmetric Polymer of a Thiophene-Benzene Unit-contained Diketopyrrolopyrrole (DPP)Derivative Used for Donor Material of Organic Solar Cells. Materials Reports, 2018, 32(9): 1423-1426.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.09.005  或          http://www.mater-rep.com/CN/Y2018/V32/I9/1423
1 Lee W, Jung J W. A wide band gap polymer based on indacenodi-thieno [3, 2-b] thiophene for high-performance bulk heterojunction polymer solar cells[J].Journal of Materials Chemistry A,2017,5(2):712.
2 Yang Y M, Chen W, Dou L, et al. High-performance multiple-donor bulk heterojunction solar cells[J].Nature Photonics,2015,9(3):190.
3 Liu S, You P, Li J, et al. Enhanced efficiency of polymer solar cells by adding a high-mobility conjugated polymer[J].Energy & Environmental Science,2015,8(5):1463.
4 Nian L, Zhang W, Zhu N, et al. Photoconductive cathode interlayer for highly efficient inverted polymer solar cells[J].Journal of the American Chemical Society,2015,137(22):6995.
5 Wang N, Chen Z, Wei W, et al. Fluorinated benzothiadiazole-based conjugated polymers for high-performance polymer solar cells wi-thout any processing additives or post-treatments[J].Journal of the American Chemical Society,2013,135(45):17060.
6 Zhao W, Li S, Yao H, et al.Molecular optimization enables over 13% efficiency in organic solar cells[J].Journal of the American Chemical Society,2017,139(21):7148.
7 Deng P, Yu J, Yin X, et al. Effect of bisalkylthio side chains on benzo [1, 2-b: 4, 5-b′] dithiophene-based polymers for organic solar cells[J].Dyes and Pigments,2017,138:47.
8 Liu F, Gu Y, Wang C, et al. Efficient polymer solar cells based on a low bandgap semi-crystalline DPP polymer-PCBM blends[J].Advanced Materials,2012,24(29):3947.
9 Lee J, Jo S B, Kim M, et al. Donor-acceptor alternating copolymer nanowires for highly efficient organic solar cells[J].Advanced Materials,2014,26(39):6706.
10 Yang X, Zheng F, Xu W, et al. Improving the compatibility of donor polymers in efficient ternary organic solar cells via post-additive soaking treatment[J].ACS Applied Materials & Interfaces,2016,9(1):618.
11 Sun Q, Zhang F, An Q, et al. Highly efficient polymer solar cells by step-by-step optimizing donor molecular packing and acceptor redistribution[J].Physical Chemistry Chemical Physics,2017,19(1):709.
12 Jin Y, Chen Z, Dong S, et al. A novel naphtho [1, 2-c: 5, 6-c′] bis ([1, 2, 5] thiadiazole)-based narrow-bandgap π-conjugated polymer with power conversion efficiency over 10%[J].Advanced Materials,2016,28(44):9811.
13 Pola M K, Boopathi K M, Padhy H, et al. Synthesis of fluorinated benzotriazole (BTZ)-and benzodithiophene (BDT)-based low-bandgap conjugated polymers for solar cell applications[J].Dyes and Pigments,2017,139: 349.
14 Armin A, Hambsch M, Wolfer P, et al. Efficient, large area, and thick junction polymer solar cells with balanced mobilities and low defect densities[J].Advanced Energy Materials,DOI:10.1002/aenm.201401221.
15 Li W, Hendriks K H, Roelofs W S, et al. Efficient small bandgap polymer solar cells with high fill factors for 300 nm thick films[J].Advanced Materials,2013,25(23):3182.
16 Li W, Roelofs W S C, Wienk M M, et al. Enhancing the photocurrent in diketopyrrolopyrrole-based polymer solar cells via energy level control[J].Journal of the American Chemical Society,2012,134(33):13787.
17 Hendriks K H, Heintges G H L, Gevaerts V S, et al. High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells[J].Angewandte Chemie International Edition,2013,52(32):8341.
18 Murphy L, Hong W, Aziz H, et al. Influences of using a high mobi-lity donor polymer on solar cell performance[J].Organic Electronics,2013,14(12):3484.
19 Huang J, Zhang S, Jiang B, et al. Terminal moiety-driven electrical performance of asymmetric small-molecule-based organic solar cells[J].Journal of Materials Chemistry A,2016,4(40):15688.
20 Arjona-Esteban A, Krumrain J, Liess A, et al. Influence of solid-state packing of dipolar merocyanine dyes on transistor and solar cell performances[J].Journal of the American Chemical Society,2015,137(42):13524.
21 Ji Y, Xiao C, Wang Q, et al. Asymmetric diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells processed from a nonchlorinated solvent[J].Advanced Materials,2016,28(5):943.
22 Sun K, Xiao Z, Lu S, et al. A molecular nematic liquid crystalline material for high-performance organic photovoltaics[J].Nature Communications,2015,6:6013.
23 Nian L, Chen Z, Herbst S, et al. Aqueous solution processed photoconductive cathode interlayer for high performance polymer solar cells with thick interlayer and thick active layer[J].Advanced Mate-rials,2016,28(34):7521.
24 Zhang G, Zhang K, Yin Q, et al. High-performance ternary organic solar cell enabled by a thick active layer containing a liquid crystalline small molecule donor[J].Journal of the American Chemical Society,2017,139(6):2387.
[1] 林珊, 史永堂, 王盈盈, 逄贝莉. 利用石墨烯基空穴传输层提升有机太阳能电池性能[J]. 材料导报, 2019, 33(12): 1945-1948.
[2] 周丹, 秦元成, 徐海涛, 李明俊. 有机太阳能电池阴极界面层概述[J]. 材料导报, 2018, 32(13): 2143-2150.
[3] 王克强, 叶深杰, 王文锦, 付甲, 陈忠仁. 不同共混方式下非对称嵌段共聚物PS-b-PMMA对PCHMA/PMMA
体系增容效果的研究:界面与胶束的竞争*
[J]. 《材料导报》期刊社, 2017, 31(8): 98-103.
[4] 任静琨, 刘伟鹏, 李战峰, 孙钦军, 王华, 史方, 郝玉英. 新型三元聚合物给体材料的合成及在有机太阳能电池中的应用*[J]. 《材料导报》期刊社, 2017, 31(17): 133-137.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed