Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (8): 98-103    https://doi.org/10.11896/j.issn.1005-023X.2017.08.020
  材料研究 |
不同共混方式下非对称嵌段共聚物PS-b-PMMA对PCHMA/PMMA
体系增容效果的研究:界面与胶束的竞争*
王克强1, 叶深杰1, 王文锦1, 付甲2, 陈忠仁2
1 宁波大学材料科学与化学工程学院, 宁波 315211;
2 南方科技大学化学系, 深圳 518055
Effect of Asymmetric Block Copolymer PS-b-PMMA on the Compatibility of PCHMA/PMMA Blends by Different Blending Methods: Interface vs Micelles
WANG Keqiang1, YE Shenjie1, WANG Wenjin1, FU Jia2, CHEN Zhongren2
1 Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211;
2 Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055
下载:  全 文 ( PDF ) ( 2016KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用熔融共混方式,利用非对称两嵌段共聚物聚苯乙烯-b-聚甲基丙烯酸甲酯(PS-b-PMMA)对聚甲基丙烯酸环己酯(PCHMA)/聚甲基丙烯酸甲酯(PMMA)共混体系进行增容。重点研究了嵌段比、共混方式以及分散相PMMA分子量对共混体系中非对称嵌段共聚物分布的影响,即嵌段共聚物稳定相界面与所形成胶束数量、位置之间的竞争关系。结果表明,在低分子量PMMA情况下共混方式对非对称嵌段共聚物的分布影响显著,改变共混方式可以有效减少分散相中的胶束数量,使嵌段共聚物主要分布在二元不相容增容体系两相界面。另一方面,增大PMMA分子量会改变非对称嵌段共聚物在两相界面的界面曲率,导致其在分散相中的溶解性增大,在界面上的稳定性减小,从而迁移至分散相内部并最终形成胶束。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王克强
叶深杰
王文锦
付甲
陈忠仁
关键词:  非对称嵌段共聚物  共混方式  增容  界面  胶束    
Abstract: Using melt blending, the asymmetric diblock copolymer polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) was added to compatibilize poly(cyclohexyl methacrylate) (PCHMA) and poly(methyl methacrylate) (PMMA) blends. Effects of the block ratio, blending method, and molecular weight of the dispersed phase PMMA was discussed to study the distribution of asymmetric block copolymer, namely the competition of interface and micelles. The results show that the blend method has significant influence on the distribution of the asymmetric block copolymer in the case of a low molecular weight PMMA. The change of the blending method can effectively reduce the number of the micelles in the dispersed phase, and the asymmetric block copolymer is mainly distributed on the interface of the compatibilized blends. On the other hand, the increase of the PMMA molecular weight can change the interfacial curvature of the asymmetric block copolymer between two phases, resulting in an increase of the solubility in the dispersed phase and the unstablility of block copolymer on the interface, which leads to the migration of BCPs into the dispersed phase and finally the micelles were formed.
Key words:  asymmetric block copolymer    blending methods    compatibilization    interface    micelles
出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  TQ320.1  
  TQ320.2  
  TQ320.7  
基金资助: 化学工程联合国家重点实验室开放课题(SKL-ChE-12D01);国家自然科学基金(NSFC21274070);宁波市“3315”计划(A类)(2012S0001);浙江省重点科技创新团队计划(2011R5001);宁波市科技局/农业与社会发展攻关项目(2011A31002);南方科技大学科研启动经费(Y01216121)
通讯作者:  陈忠仁:1964年生,博士,教授,主要研究方向为聚合物分子设计与可控聚合、高分子聚集态结构调控与表征、有机纳米材料多尺度加工、高分子复合材料界面设计与调控、高分子疲劳失效机理与寿命预测等 E-mail:chenzr@sustc.edu.cn   
作者简介:  王克强:男,1988年生,硕士研究生,研究方向为聚合物共混与流变、高分子物理 E-mail:wwwwkq@yeah.net
引用本文:    
王克强, 叶深杰, 王文锦, 付甲, 陈忠仁. 不同共混方式下非对称嵌段共聚物PS-b-PMMA对PCHMA/PMMA
体系增容效果的研究:界面与胶束的竞争*[J]. 《材料导报》期刊社, 2017, 31(8): 98-103.
WANG Keqiang, YE Shenjie, WANG Wenjin, FU Jia, CHEN Zhongren. Effect of Asymmetric Block Copolymer PS-b-PMMA on the Compatibility of PCHMA/PMMA Blends by Different Blending Methods: Interface vs Micelles. Materials Reports, 2017, 31(8): 98-103.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.020  或          https://www.mater-rep.com/CN/Y2017/V31/I8/98
1 Zhang G Y, Wang W Z, Wu Q. Compatibilizing effect of copolymer in polymer blends Ⅱ.Grafted and random copolymers [J]. Polym Bull,2003(3):29(in Chinese).
张国颖, 汪伟志, 吴强. 共聚物在聚合物共混体系中的增容作用Ⅱ.接枝共聚物和无规共聚物[J].高分子通报,2003(3):29.
2 Wang J, Lu Y Y, Xu Y C, et al. Effects of block copolymer compa-tibilizers on phase behavior and interfacial properties of incompatible homopolymer composites [J]. Acta Polym Sin,2016(3):271(in Chinese).
王健,卢宇源,徐玉赐,等. 嵌段共聚物增容剂对不相容均聚物共混体系相行为和界面性质的影响[J].高分子学报,2016(3):271.
3 Macosko C W, Guegan P, Khandpur A K, et al. Compatibilizers for melt blending: Premade block copolymers[J].Macromolecules,1996,29(17):5590.
4 Jeon H K, Zhang J, Macosko C W. Premade vs. reactively formed compatibilizers for PMMA/PS melt blends[J]. Polymer,2005,46(26):12422.
5 Huang C, Yu W. Role of block copolymer on the coarsening of morphology in polymer blend: Effect of micelles[J]. Aiche J,2015,61(1):285.
6 Zhong S, Wang C, Weng G S,et al. Effect of LIR-390 on structure and properties of natural rubber and butadiene rubber[J]. Mater Rev,2015,29(S1):267(in Chinese).
钟硕,王超,翁更生,等. 液体异戊二烯-丁二烯共聚物对天然橡胶、顺丁橡胶结构与性能的影响[J].材料导报,2015,29(S1):267.
7 Thomas S, Prud′homme R E. Compatibilizing effect of block copolymers in heterogeneous polystyrene/poly(methyl methacrylate) blends[J].Polymer,1992,33(20):4260.
8 Noolandi J, Hong K M. Effect of block copolymers at a demixed homopolymer interface[J].Macromolecules,1984,17(8):1531.
9 Noolandi J, Hong K M. Interfacial properties of immiscible homo-polymer blends in the presence of block copolymers [J]. Macromolecules,1982,15(2):482.
10 Noolandi J. Recent advances in the theory of polymeric alloys[J]. Polym Eng Sci,1984,24(2):70.
11 Vilgis T A, Noolandi J. Theory of homopolymer-block copolymer blends. The search for a universal compatibilizer[J]. Macromolecules,1990,23(11):2941.
12 Leibler L. Theory of phase equilibria in mixtures of copolymers and homopolymers interfaces near the consolute point[J]. Macromolecules,1982,15(5):1283.
13 Fredrickson G H, Bates F S. Design of bicontinuous polymeric microemulsions [J]. J Polym Sci Part B: Polym Phys,1997,35(35):2775.
14 Leibler L. Emulsifying effects of block copolymers in incompatible polymer blends[J].Macromol Symposia,1988,16(1):1.
15 Wang Z G, Safran S A. Equilibrium emulsification of polymer blends by diblock copolymers [J]. J de Physique,1990,51(2):185.
16 Molau G E. Heterogeneous polymer systems. Ⅰ. Polymeric oil-in-oil emulsions [J]. J Polym Sci Part A: General Papers,1965,3(4):1267.
17 Sundararaj U, Macosko C W. Drop breakup and coalescence in polymer blends: The effects of concentration and compatibilization [J]. Macromolecules,1995,28(8):2647.
18 Dadmun M. Effect of copolymer architecture on the interfacial structure and miscibility of a ternary polymer blend containing a copolymer and two homopolymers [J]. Macromolecules,1996,29(11):3868.
19 Xu Y, Thurber C M, Macosko C W, et al. Poly(methyl methacrylate)-block-polyethylene-block-poly(methyl methacrylate) triblock copolymers as compatibilizers for polyethylene/poly(methyl methacrylate) blends [J]. Ind Eng Chem Res,2014,53(12):4718.
20 Chen Z R, Lanzarotta J M, Nagai Y, et al. Method for mixing a rubber composition: US, 8450409 B2[P]. 2013-05-28.
21 Morse D C. Diffusion of copolymer surfactant to a polymer/polymer interface [J]. Macromolecules,2007,40(10):3831.
[1] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[2] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[3] 吴迪, 林方敏, 张洪龙, 宋孟, 杨永, 殷兆良, 章小峰. 合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究[J]. 材料导报, 2024, 38(9): 22070183-6.
[4] 赵涔凯, 邹杰鑫, 王旻, 李思明, 赵微, 张时林, 滕珏瑾, 王艳皎, 吴明铂, 胡涵, 李亚伟. 基于阴离子交换膜电解水的离聚物研究进展[J]. 材料导报, 2024, 38(8): 23080132-11.
[5] 魏一帆, 夏会聪, 张佳楠. 钠离子存储器件中界面效应作用机制研究[J]. 材料导报, 2024, 38(8): 23120085-9.
[6] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[7] 张霞, 吴瑛, 袁牧锋, 王春栋. MOFs衍生物在尿素氧化中的研究进展[J]. 材料导报, 2024, 38(6): 23020193-10.
[8] 长俊钢, 陈玉, 何静, 梁奇银, 雷晓波, 蔡芳共, 张勤勇. 热电器件界面性能的研究现状[J]. 材料导报, 2024, 38(6): 22080238-13.
[9] 姚志华, 张建华, 辛建平, 穆锐. 风积砂-黄土混合料与钢界面的环形剪切力学特性[J]. 材料导报, 2024, 38(5): 23070012-8.
[10] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[11] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[12] 孙茂钧, 胡涛, 栾红波, 李茜, 佘祖新, 柏遇合, 王玲, 杨小奎, 周堃. 胶粘剂在湿热环境下的老化行为规律及环境损伤机理[J]. 材料导报, 2024, 38(5): 22090006-6.
[13] 王成君, 杨晓东, 张辉, 周幸叶, 戴家赟, 李早阳, 段晋胜, 乔丽, 王广来. 薄界面异质异构晶圆键合技术研究现状及趋势[J]. 材料导报, 2024, 38(24): 23100102-14.
[14] 司春棣, 崔亚宁, 李松, 贾彦顺, 凡涛涛, 张义. 铁尾矿在沥青路面中的资源化利用研究进展与展望[J]. 材料导报, 2024, 38(22): 24050001-13.
[15] 赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed