Please wait a minute...
材料导报  2018, Vol. 32 Issue (13): 2143-2150    https://doi.org/10.11896/j.issn.1005-023X.2018.13.002
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
有机太阳能电池阴极界面层概述
周丹1, 秦元成1, 徐海涛2, 李明俊1
1 南昌航空大学环境与化学工程学院,南昌 330063;
2 南昌航空大学材料科学与工程学院,南昌 330063
A Review on Cathode Interfacial Layers of Organic Solar Cells
ZHOU Dan1, QIN Yuancheng1, XU Haitao2, LI Mingjun1
1 School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063;
2 College of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063
下载:  全 文 ( PDF ) ( 2536KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 体相异质结聚合物太阳能电池因具有质轻、柔韧性好、便于大面积印刷等优点引起了越来越多的关注。近年来,聚合物太阳能电池取得了较大的进步。然而,聚合物太阳能电池要实现商业化大面积制备还需要解决一些科学问题,如电荷的分离、传输和收集效率低等。良好的界面接触对提高器件性能至关重要。本文综述了聚合物太阳能电池界面层的作用及分类,包括无机类、富勒烯类、水/醇溶性中性共轭聚合物、水/醇溶性离子型共轭聚合物电解质、超支化小分子和苝酰亚胺衍生物。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周丹
秦元成
徐海涛
李明俊
关键词:  有机太阳能电池  界面工程  阴极界面层    
Abstract: Bulk heterojunction polymer solar cells (PSCs) have attracted enormous attention due to their various advantages of low-cost, favorable flexibility and feasibility for large-scales roll-to-roll fabrication. Considerable progress has been made in researches of PSCs in recent years. Nevertheless, several scientific issues and challenges of PSCs like poor charge carrier separation, transfer and collection, have been hindering their application in large-scale commercial production. Stable and effective interfacial contact plays a critical role in enhancing the performance of PSCs. This article summarizes the functions and classifications of the interfacial layer in polymer solar cells, including inorganic interlayers, fullerene derivatives, water/alcohol-soluble neutral conjugated polymers, water/alcohol-soluble ionic conjugated polymers electrolyte, hyperbranched small molecule electrolytes and perylene diimide derivatives.
Key words:  organic solar cells    interfacial engineering    cathode interfacial layer
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  TM914.4  
基金资助: 国家自然科学基金(51703091;51663018);南昌航空大学博士启动基金(EA201702484);江西省教育厅科学技术项目(DA201802151)
通讯作者:  王吉林:通信作者,男,1985年生,博士,硕士研究生导师,主要从事无机合成化学、无机非金属材料及先进功能陶瓷材料方面的产学研工作 E-mail:jilinwang@glut.edu.cn 龙飞:通信作者,男,1979年生,博士,博士研究生导师,主要从事薄膜光伏材料研究及相关器件的开发工作 E-mail:longf@glut.edu.cn   
作者简介:  周丹:女,1984年生,博士,讲师,主要从事有机太阳能电池界面材料的合成及器件制备 E-mail:zhoudan@nchu.edu.cn
引用本文:    
周丹, 秦元成, 徐海涛, 李明俊. 有机太阳能电池阴极界面层概述[J]. 材料导报, 2018, 32(13): 2143-2150.
ZHOU Dan, QIN Yuancheng, XU Haitao, LI Mingjun. A Review on Cathode Interfacial Layers of Organic Solar Cells. Materials Reports, 2018, 32(13): 2143-2150.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.002  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2143
1 Zhao W, Li S, Yao H, et al. Molecular optimization enables over 13% efficiency in organic solar cells[J].Journal of the American Chemical Society,2017,139(21):7148.
2 Bulliard X, Ihn S G, Yun S, et al. Enhanced performance in polymer solar cells by surface energy control[J].Advanced Functional Mate-rials,2010,20(24):4381.
3 Chen L M, Xu Z, Hong Z, et al. Interface investigation and engineering-achieving high performance polymer photovoltaic devices[J].Journal of Materials Chemistry,2010,20(13):2575.
4 Duan C, Zhong C, Liu C, et al. Highly efficient inverted polymer solar cells based on an alcohol soluble fullerene derivative interfacial modification material[J].Chemistry of Materials,2012,24(9):1682.
5 Lee R H, Syu J Y, Huang J L. Photovoltaic properties of the polymer solar cells comprising crosslinked maleimide polymers and fullerene-derivative PCBM[J].Polymers for Advanced Technologies,2011,22(12):2110.
6 Lai Y Y, Cheng Y J, Hsu C S. Applications of functional fullerene materials in polymer solar cells[J].Energy & Environmental Science,2014,7(6):1866.
7 Mei Q, Li C, Gong X, et al. Enhancing the performance of polymer photovoltaic cells by using an alcohol soluble fullerene derivative as the interfacial layer[J].ACS Applied Materials & Interfaces,2013,5(16):8076.
8 He C, Zhong C, Wu H, et al. Origin of the enhanced open-circuit voltage in polymer solar cells via interfacial modification using conjugated polyelectrolytes[J].Journal of Materials Chemistry,2010,20(13):2617.
9 Zhang L, He C, Chen J, et al. Bulk-heterojunction solar cells with benzotriazole-based copolymers as electron donors: Largely improved photovoltaic parameters by using PFN/Al bilayer cathode[J].Macromolecules,2010,43(23):9771.
10 He Z, Zhang C, Xu X, et al. Largely enhanced efficiency with a PFN/Al bilayer cathode in high efficiency bulk heterojunction photovoltaic cells with a low bandgap polycarbazole donor[J].Advanced Materials,2011,23(27):3086.
11 Gu C, Chen Y, Zhang Z, et al. Achieving high efficiency of PTB7-based polymer solar cells via integrated optimization of both anode and cathode interlayers[J].Advanced Energy Materials,2014,4(8):1301771.
12 Duan C, Wang L, Zhang K, et al. Conjugated zwitterionic polyelectrolytes and their neutral precursor as electron injection layer for high-performance polymer light-emitting diodes[J].Advanced Materials,2011,23(14):1665.
13 Li Y L, Cheng Y S, Yeh P N, et al. Structure tuning of crown ether grafted conjugated polymers as the electron transport layer in bulk-heterojunction polymer solar cells for high performance[J].Advanced Functional Materials,2014,24(43):6811.
14 Dong Y, Hu X, Duan C, et al. A series of new medium-bandgap conjugated polymers based on naphtho[1,2-c:5,6-c]bis(2-octyl-[1,2,3]triazole) for high-performance polymer solar cells[J].Advanced Materials,2013,25(27):3683.
15 He Z, Zhong C, Su S, et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J].Nature Photonics,2012,6(9):591.
16 Albrecht S, Janietz S, Schindler W, et al. Fluorinated copolymer PCPDTBT with enhanced open-circuit voltage and reduced recombination for highly efficient polymer solar cells[J].Journal of the American Chemical Society,2012,134(36):14932.
17 Blom P W M, Mihailetchi V D, Koster L J A, et al. Device physics of polymer: Fullerene bulk heterojunction solar cells[J].Advanced Materials,2007,19(12):1551.
18 Park S H, Roy A, Beaupré S, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%[J].Nature Photonics,2009,3(5):297.
19 Zhao Y, Xie Z, Qin C, et al. Enhanced charge collection in polymer photovoltaic cells by using an ethanol-soluble conjugated poly-fluorene as cathode buffer layer[J].Solar Energy Materials and Solar Cells,2009,93(5):604.
20 Liao S H, Li Y L, Jen T H, et al. Multiple functionalities of poly-fluorene grafted with metal ion-intercalated crown ether as an electron transport layer for bulk-heterojunction polymer solar cells: Optical interference, hole blocking, interfacial dipole, and electron conduction[J].Journal of the American Chemical Society,2012,134(35):14271.
21 Xu X, Cai W, Chen J, et al. Conjugated polyelectrolytes and neutral polymers with poly (2, 7-carbazole) backbone: Synthesis, characterization, and photovoltaic application[J].Journal of Polymer Science Part A: Polymer Chemistry,2011,49(5):1263.
22 Sun J, Zhu Y, Xu X, et al. High efficiency and high Voc inverted polymer solar cells based on a low-lying HOMO polycarbazole donor and a hydrophilic polycarbazole interlayer on ITO cathode[J].The Journal of Physical Chemistry C,2012,116(27):14188.
23 Guan X, Zhang K, Huang F, et al. Amino N-oxide functionalized conjugated polymers and their amino-functionalized precursors: New cathode interlayers for high-performance optoelectronic devices[J].Advanced Functional Materials,2012,22(13):2846.
24 Zhu Y, Xu X, Zhang L, et al. High efficiency inverted polymeric bulk-heterojunction solar cells with hydrophilic conjugated polymers as cathode interlayer on ITO[J].Solar Energy Materials and Solar Cells,2012,97:83.
25 Tang Z, Andersson L M, George Z, et al. Interlayer for modified cathode in highly efficient inverted ITO-free organic solar cells[J].Advanced Materials,2012,24(4):554.
26 Oh S H, Na S I, Jo J, et al. Water-soluble polyfluorenes as an interfacial layer leading to cathode-independent high performance of organic solar cells[J].Advanced Functional Materials,2010,20(12):1977.
27 Zhang Y Y,Wang Y H,Lu Y Q,et al. Simulation optimizing of bifacial HIT solar cell on N-type substrate with AMPS[J].Journal of Chongqing University of Technology(Natural Science),2017,31(5):75(in Chinese).
张研研,王宇航,路钰清,等.利用AMPS对N型衬底上双面HIT太阳电池的模拟优化[J].重庆理工大学学报(自然科学版),2017,31(5):75.
28 Yang T, Wang M, Duan C, et al. Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte[J].Energy & Environmental Science,2012,5(8):8208.
29 Jo J, Pouliot J R, Wynands D, et al. Enhanced efficiency of single and tandem organic solar cells incorporating a diketopyrrolopyrrole-based low-bandgap polymer by utilizing combined ZnO/polyelectrolyte electron-transport layers[J].Advanced Materials,2013,25(34):4783.
30 Shi T, Zhu X, Yang D, et al. Thermal annealing influence on poly (3-hexyl-thiophene)/phenyl-C61-butyric acid methyl ester-based solar cells with anionic conjugated polyelectrolyte as cathode interface layer[J].Applied Physics Letters,2012,101(16):161602.
31 Chen Y, Jiang Z, Gao M, et al. Efficiency enhancement for bulk he-terojunction photovoltaic cells via incorporation of alcohol soluble conjugated polymer interlayer[J].Applied Physics Letters,2010,100(20):203304.
32 Rider D A, Worfolk B J, Harris K D, et al. Stable inverted polymer/fullerene solar cells using a cationic polythiophene modified PEDOT∶PSS cathodic interface[J].Advanced Functional Materials,2010,20(15):2404.
33 Zilberberg K, Behrendt A, Kraft M, et al. Ultrathin interlayers of a conjugated polyelectrolyte for low work-function cathodes in efficient inverted organic solar cells[J].Organic Electronics,2013,14(3):951.
34 Yao K, Chen L, Chen Y, et al. Influence of water-soluble polythiophene as an interfacial layer on the P3HT/PCBM bulk heterojunction organic photovoltaics[J].Journal of Materials Chemistry,2011,21(36):13780.
35 Duan C, Zhang K, Guan X, et al. Conjugated zwitterionic polyelectrolyte-based interface modification materials for high performance polymer optoelectronic devices[J].Chemical Science,2013,4(3):1298.
36 Chang Y M, Leu C Y. Conjugated polyelectrolyte and zinc oxide stacked structure as an interlayer in highly efficient and stable orga-nic photovoltaic cells[J].Journal of Materials Chemistry A,2013,1(21):6446.
37 Kesters J, Govaerts S, Pirotte G, et al. High-permittivity conjugated polyelectrolyte interlayers for high-performance bulk heterojunction organic solar cells[J].ACS Applied Materials & Interfaces,2016,8(10):6309.
38 Subbiah J, Mitchell V D, Hui N K C, et al. A green route to conjugated polyelectrolyte interlayers for high-performance solar cells[J].Angewandte Chemie,2017,129(29):8551.
39 Zhang K, Hu Z, Xu R, et al. High-performance polymer solar cells with electrostatic layer-by-layer self-assembled conjugated polyelectrolytes as the cathode interlayer[J].Advanced Materials,2015,27(24):3607.
40 Kang R, Oh S H, Kim D Y. Influence of the ionic functionalities of polyfluorene derivatives as a cathode interfacial layer on inverted po-lymer solar cells[J].ACS Applied Materials & Interfaces,2014,6(9):6227.
41 Ouyang X, Peng R, Ai L, et al. Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte[J].Nature Photo-nics,2015,9(8):520.
42 Zhang Z G, Qi B, Jin Z, et al. Perylene diimides: A thickness-insensitive cathode interlayer for high performance polymer solar cells[J].Energy & Environmental Science,2014,7(6):1966.
[1] 林珊, 史永堂, 王盈盈, 逄贝莉. 利用石墨烯基空穴传输层提升有机太阳能电池性能[J]. 材料导报, 2019, 33(12): 1945-1948.
[2] 曾祥花, 李战峰, 任静琨, 刘伟鹏, 陈今波, 王向坤, 郝玉英. 基于噻吩-苯非对称单元的DPP类聚合物给体材料的合成及光伏性能[J]. 《材料导报》期刊社, 2018, 32(9): 1423-1426.
[3] 任静琨, 刘伟鹏, 李战峰, 孙钦军, 王华, 史方, 郝玉英. 新型三元聚合物给体材料的合成及在有机太阳能电池中的应用*[J]. 《材料导报》期刊社, 2017, 31(17): 133-137.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed