Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 133-137    https://doi.org/10.11896/j.issn.1005-023X.2017.017.019
  太阳能电池材料 |
新型三元聚合物给体材料的合成及在有机太阳能电池中的应用*
任静琨1, 刘伟鹏1, 李战峰1, 孙钦军1, 王华2, 史方1, 郝玉英1
1 太原理工大学物理与光电工程学院,新型传感器与智能控制教育部 (山西省) 重点实验室,太原 030024;
2 太原理工大学,新材料界面科学与工程省部共建教育部重点实验室,太原 030024
Synthesis of a New Random Terpolymer Donor with an Application to Organic Solar Cells
REN Jingkun1, LIU Weipeng1, LI Zhanfeng1, SUN Qinjun1, WANG Hua2, SHI Fang1, HAO Yuying1
1 Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024;
2 Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024
下载:  全 文 ( PDF ) ( 1641KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以吡咯并[3,4-c]吡咯二酮 (DPP) 为A单元,苯并[1,2-b ∶4,5-b′]二噻吩 (BDT) 和萘为D单元,合成了一种新型2D/A型三元共轭聚合物太阳能电池给体材料 (PDPP-BDT-NT), 通过核磁共振氢谱 (1H NMR) 对其结构进行了表征, 通过热重分析、紫外-可见吸收光谱 (UV-Vis)、循环伏安法对其热学性质、光物理性能及能级结构进行了研究。 PDPP-BDT-NT具有较好的热稳定性,热分解的温度为401 ℃,有较宽的吸收光谱,可覆盖300~900 nm,最高占据轨道 (HOMO) 能级为-5.35 eV。以聚合物PDPP-BDT-NT为给体材料,PC60BM为受体材料,制备了一系列有机聚合物太阳能电池,在大气质量 (AM) 为1.5 G,功率为 100 mW·cm-2模拟的太阳光照射下,有机聚合物太阳能电池的光电转化效率(PCE)可达2.09%。甲醇处理后,有机聚合物太阳能电池的PCE可达2.34%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任静琨
刘伟鹏
李战峰
孙钦军
王华
史方
郝玉英
关键词:  有机太阳能电池  聚合物给体材料  苯并二噻吩    
Abstract: A new random 2D/A terpolymer PDPP-BDT-NT comprising diketopyrrolo[3,4-c]pyrrole-1,4-dione (DPP) as A unit, benzo[1,2-b∶4,5-b′]dithiophene (BDT) and naphthalene (NT) as D units has been designed and synthesized via Stille coupling polymerization specifically for polymer solar cells (PSCs). Its structure was defined by proton nuclear magnetic resonance (1H NMR). And its thermogravimetric analysis, photophysical properties and energy-level structure were studied by thermal property, ultraviolet-visble (UV-Vis) absorption spectra, and cyclic voltammetry(CV). PDPP-BDT-NT exhibited good thermal stability with a decomposition temperature over 401 ℃. The terpolymer presented both broad absorption (300—900 nm) and low highest occupied molecular orbital level for -5.35 eV. Preliminary studies of bulk heterojunction (BHJ) solar cells based on PDPP-BDT-NT as donor material with PC60BM as acceptor material showed a promising power conversion efficiency (PCE) of 2.09% without any processing and post-treatment (under the illumination of AM 1.5, 100 mW·cm-2), after MeOH treatment, the PCE of polymer solar cell was raised to 2.34%.
Key words:  organic solar cells    polymer donor    benzodithiophene
               出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  TM914.4  
基金资助: 国家自然科学基金(61308093;61571317;61274056;11504257;61475109);博士点新教师基金(20131402120020); 中国博士后科学基金(2015M572454)
通讯作者:  李战峰:通讯作者,男,1978年生,博士,副教授,研究方向为有机光电子材料 E-mail:lzhf@163.com   
作者简介:  任静琨:女,1988年生,博士研究生,研究方向为有机光电材料的合成与表征 E-mail:renjk260062@163.com
引用本文:    
任静琨, 刘伟鹏, 李战峰, 孙钦军, 王华, 史方, 郝玉英. 新型三元聚合物给体材料的合成及在有机太阳能电池中的应用*[J]. 《材料导报》期刊社, 2017, 31(17): 133-137.
REN Jingkun, LIU Weipeng, LI Zhanfeng, SUN Qinjun, WANG Hua, SHI Fang, HAO Yuying. Synthesis of a New Random Terpolymer Donor with an Application to Organic Solar Cells. Materials Reports, 2017, 31(17): 133-137.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.019  或          http://www.mater-rep.com/CN/Y2017/V31/I17/133
1 Zhang F, Inganäs O, Zhou Y, et al.Development of polymer-fullerene solar cells[J]. National Sci Rev,2016,3(2):222.
2 Zhou H X, Yang L Q, You W. Rational design of high performance conjugated polymers for organic solar cells[J]. Macromolecules,2012,45(2):607.
3 Somasundaram S, Jeon S, Park S.Triphenylamine and benzothiadiazole-based D-A-A’ and A’-A-D-D-A-A’ type small molecules for solution-processed organic solar cells[J]. Macromolecular Res,2016,24(3):226.
4 Zhao W, Li S, Yao H, et al.Molecular optimization enables over 13% efficiency in organic solar cells[J]. J Am Chem Soc,2017,139(21):7148.
5 Chen J W, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices[J]. Accounts Chem Res,2009,42(11):1709.
6 Goker S, Hizalan G, Aktas E, et al. 2,1,3-Benzooxadiazole, thiophene and benzodithiophene based random copolymers for organic photovoltaics: Thiophene versus thieno[3,2-b]thiophene as π-conjugated linkers[J]. New J Chem,2016,40(12):10455.
7 Keshtov M L, Khokhlov A R, Kuklin S A, et al. Benzothiadiazole-pyrrolo[3,4-b]dithieno[2,3-f:3′,2′-h] quinoxalindione-based random terpolymer incorporating strong and weak electron accepting [1,2,5]thiadiazolo[3,4g]quinoxalinefor polymer solar cells[J]. Organ Electron,2017,41:1.
8 Hendriks K H, Heintges G H L, Wienk M M, et al.Comparing random and regular diketopyrrolopyrrole-bithiophene-thienopyrrolo-dione terpolymers for organic photovoltaics[J]. J Mater Chem A,2014,2(42):17899.
9 Tamilavan V, Song M, Jin S H, et al.Synthesis of new broad absorption low band gap random copolymers for bulk heterojunction solar cell applications[J]. Macromol Res,2013,21:406.
10 Kang T E, Kim K H, Kim B J. Design of terpolymers as electron donors for highly efficient polymer solar cells[J]. J Mater Chem A,2014,2(37):15252.
11 Li Z, Qiao Z, Liu W, et al.Conjugated random copolymer of benzodithiophene-difluorobenzene-diketopyrrolopyrrole-benzothia-diazole with a broad absorption range of 300-900nm for bulk heterojunction solar cells[J]. Mater Lett,2015,139: 307.
12 Ha Y H, Lee J E, Hwang M C, et al.A new BDT-based conjugated polymer with donor-donor composition for bulk heterojunction solar cells[J]. Macromol Res,2016,24:457.
13 Yao H, Ye L, Zhang H, et al.Molecular design of benzodithiophene-based organic photovoltaic materials[J]. Chem Rev,2016,116(12):7397.
14 Wang Z H, Li Z F, Zhang H Q, et al.A conjugated random copolymer of benzodithiophene-difluorobenzene-diketopyrrolopyrrole with full visible-light absorption for bulk-heterojunction solar cells[J]. Macromol Chem Phys,2014,215(21):2119.
15 Kim K H, Park S, Yu H, et al.Determining optimal crystallinity of diketopyrrolopyrrole-based terpolymers for highly efficient polymer solar cells and transistors[J]. Chem Mater,2014, 26(24):6963.
16 Huang Y S, Chen H J, Wu F, et al. Efficient polymer solar cells based on terpolymers with a broad absorption range of 300—900 nm[J]. J Mater Chem A,2014,2:5218.
17 Sambathkumar B P, Deepakrao F, Iyer S, et al.Two donor-one acceptor random terpolymer comprised of diketopyrrolopyrrole quaterthiophene with various donor π-linkers for organic photovoltaic application[J]. J Phys Chem C,2016,120:26609.
18 Hendriks K H, Li W W, Heintges G H L, et al. Homocoupling defects in diketopyrrolopyrrole-based copolymers and their effect on photovoltaic performance[J]. J Am Chem Soc,2014,136(31):11128.
19 Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J Chem Phys,1993,98(7):5648.
20 Stephens P J, Frisch M J, Devlin F J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. J Phys Chem,1994,98(45):11623.
21 Dou L T, Gao J, Richard E, et al. Systematic Investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells[J]. J Am Chem Soc,2012,134(24):10071.
22 Zheng Y, Li S, Zheng D, et al.Effects of different polar solvents for solvent vapor annealing treatment on the performance of polymer solar cells[J]. Organ Electron,2014,15(11):2647.
[1] 林珊, 史永堂, 王盈盈, 逄贝莉. 利用石墨烯基空穴传输层提升有机太阳能电池性能[J]. 材料导报, 2019, 33(12): 1945-1948.
[2] 曾祥花, 李战峰, 任静琨, 刘伟鹏, 陈今波, 王向坤, 郝玉英. 基于噻吩-苯非对称单元的DPP类聚合物给体材料的合成及光伏性能[J]. 《材料导报》期刊社, 2018, 32(9): 1423-1426.
[3] 周丹, 秦元成, 徐海涛, 李明俊. 有机太阳能电池阴极界面层概述[J]. 材料导报, 2018, 32(13): 2143-2150.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed