Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 152-157    https://doi.org/10.11896/j.issn.1005-023X.2017.017.022
  太阳能电池材料 |
N离子注入改性SnO2缓冲层及其CdTe太阳电池应用*
刘源, 唐鹏, 张静全, 武莉莉, 李卫, 王文武, 冯良桓
四川大学材料科学与工程学院,成都 610065
SnO2 Buffer Layer with N Ions Implantation and Its Application in CdTe Solar Cells
LIU Yuan, TANG Peng, ZHANG Jingquan, WU Lili, LI Wei, WANG Wenwu, FENG Lianghuan
College of Materials Science and Engineering, Sichuan University, Chengdu 610065
下载:  全 文 ( PDF ) ( 1864KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 使用等离子注入技术对SnO2薄膜进行N离子注入改性,进行方块电阻、光学透过、表面形貌、Kelvin探针和X射线光电子能谱(XPS)表征,并将其作为缓冲层应用到CdTe太阳电池中。研究结果发现,对于30 nm厚的SnO2缓冲层,经过30 s、10 min不同时间N离子注入以后,其300~800 nm波长范围透过率有所降低,而体电阻率则明显增加,特别是N离子注入10 min的SnO2缓冲层,表面出现很多凹孔,呈蜂窝状结构,且对后续沉积的CdS层表面形貌产生了明显影响。Kelvin探针表征结果显示,随着N离子注入时间的延长,SnO2缓冲层功函数逐渐增加,最高达到约5.075 eV,比本征SnO2缓冲层的功函数高出0.15 eV。XPS测试结果显示,N离子注入10 min后,SnO2缓冲层N1s结合能峰位向低结合能方向发生了明显移动,而O1s结合能峰位则向高结合能方向移动了,且表面区非晶格氧所占比例增大。对比电池结果,有N离子注入改性SnO2缓冲层的电池与无缓冲层的电池相比,效率从10%左右增加到12%以上,最高达到12.47%,其中开路电压提高最为显著,从约750 mV提高到790 mV以上,提升了约5%,电池的整体均匀性也明显改善。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘源
唐鹏
张静全
武莉莉
李卫
王文武
冯良桓
关键词:  N离子注入  SnO2缓冲层  原子力显微镜  X射线光电子能谱  CdTe太阳电池    
Abstract: SnO2 thin films with thickness about 30 nm were prepared by RF magnetron sputtering and implanted with N ions by ion implantation technique, which were applied in CdTe solar cells as buffer layers. The results show that after N ions implantation, transmittance of SnO2 buffer layer is around 1—3 percentage points lower than FTO in 300—800 nm range, but sheet resistance is obviously increased, especially for sample with 10 min N ions implantation, of which surface morphology is cellular and shows many hollows, and the surface morphology of CdS layers has also changed. The results of Kelvin probe show that work function of SnO2 buffer layers increase with implantation time of N ions, whose maximum value is 5.075 eV and is 0.15 eV larger than intrinsic SnO2 buffer layer. The results of X-ray photoelectron spectroscopy show that after 10 min N ions implantation, the bind energy of N1s become lower than intrinsic SnO2 buffer layer, but both the bind enegy of O1s and the concentration of oxygen in non-stoichiometric oxides in the surface region are increased. The results of CdTe solar cells show that efficiency increases from 10.76% to 12.47% after N ions implantation, open circuit voltage increases from about 750 mV to above 790 mV, and the uniformity is also improved.
Key words:  N ions implantation    SnO2 buffer layer    atomic force microscope    X-ray photoelectron spectroscopy    CdTe solar cell
               出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  TB34  
  O475  
基金资助: 国家高技术研究发展计划(2015AA050610);四川省支撑计划(2016GZX0272);四川省支撑计划(2014GZ0159)
通讯作者:  张静全:通讯作者,男,1970年生,博士,教授,博士研究生导师,从事化合物半导体材料与器件研究工作 E-mail:zh_jq2000@263.net   
作者简介:  刘源:男,1992年生,硕士研究生,研究方向为材料物理与化学 E-mail:renyuanhuzai@qq.com
引用本文:    
刘源, 唐鹏, 张静全, 武莉莉, 李卫, 王文武, 冯良桓. N离子注入改性SnO2缓冲层及其CdTe太阳电池应用*[J]. 《材料导报》期刊社, 2017, 31(17): 152-157.
LIU Yuan, TANG Peng, ZHANG Jingquan, WU Lili, LI Wei, WANG Wenwu, FENG Lianghuan. SnO2 Buffer Layer with N Ions Implantation and Its Application in CdTe Solar Cells. Materials Reports, 2017, 31(17): 152-157.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.022  或          http://www.mater-rep.com/CN/Y2017/V31/I17/152
1 Wu X, Sheldon P, et al. CdS/CdTe thin-film solar cell with a zinc stannate buffer layer [C]∥NCPV Photovoltaics Program Review: Proceedings of the 15th Conference. Denver,1999:37.
2 Ferekides C S, Mamazza R, Balasubramanian U, et al. Transparent conductors and buffer layers for CdTe solar cells [J]. Thin Solid Films,2005,480:224.
3 Matin M A, Amin N, Sopian K. Investigation of different buffer layers, front and back contacts for CdS/CdTe PV from numerical analysis [C]∥Proceedings of the 2009 34th IEEE Photovoltaic Specialists Conference, Philadelphia,2009:4.
4 Li X, Ribelin R, et al. The effect of high-resistance SnO2 on CdS/CdTe device performance [C]∥NCPV Photovoltaics Program Review: Proceedings of the 15th Conference. Denver,1999:230.
5 Kephart J M, McCamy J W, Ma Z, et al. Band alignment of front contact layers for high-efficiency CdTe solar cells [J]. Solar Energy Mater Solar Cells,2016,157:266.
6 Chen Q, Zeng G G, Song H J, et al. Influence of SnO2 films with high resistance on the performance of CdTe solar cells [J]. J Mater Sci Mater Electron,2009,20(7):661.
7 Fuchs A, Schimper H J, Klein A, et al. Photoemission studies on undoped SnO2 buffer layers for CdTe thin film solar cells [C]∥European Materials Research Society Conference Symposium: Advanced Inorganic Materials and Concepts for Photovoltaics, Nice. France,2011.
8 Chu P K, Qin S, Chan C, et al. Plasma immersion ion implantation—A fledgling technique for semiconductor processing [J]. Mater Sci Eng R,1996,17(6-7):207.
9 Conrad J R, Radtke J L, Dodd R A, et al. Plasma source ion-implantation technique for surface modification of materials [J]. J Appl Phys,1987,62(11):4591.
10 Kilic C, Zunger A. Origins of coexistence of conductivity and transparency in SnO2 [J]. Phys Rev Lett,2002,88(9):095501.
11 Burstein E. Anomalous optical absorption limit in insb [J]. Phys Rev,1954,93(3):632.
12 Amanullah F M, Pratap K J, Babu V H. Compositional analysis and depth profile studies on undoped and doped tin oxide films prepared by spray technique [J]. Mater Sci Eng B,1998,52(2-3):93.
13 Wu X, Asher S, Levi D H, et al. Interdiffusion of CdS and Zn2SnO4 layers and its application in CdS/CdTe polycrystalline thin-film solar cells [J]. J Appl Phys,2001,89(8):4564.
14 Kephart J M. Optimization of the front contact to minimize short-circuit current losses in CdTe thin-film solar cells [D]. Colorado: Colorado State University,2015.
15 Duong T T, Choi H J, He Q J. Enhancing the efficiency of dye sensitized solar cells with an SnO2 blocking layer grown by nanocluster deposition [J]. J Alloys Compd,2013,561:206.
16 Gloeckler M, Jenkins C R, Sites J R. Explanation of light/dark superposition failure in CIGS solar cells [C]∥ Materials Research Society Symposium Proceedings: Symposium on Compound Semiconductor Photovoltaics held at the MRS Spring Meeting. San Francisco,2003:231.
[1] 王威娜,徐青杰,周圣雄,秦煜,闫强. 沥青-集料黏附作用评价方法综述[J]. 材料导报, 2019, 33(13): 2197-2205.
[2] 宋博, 陈旭. 扫描Kelvin探针力显微镜:工作原理及在材料腐蚀研究中的应用[J]. 《材料导报》期刊社, 2018, 32(7): 1151-1157.
[3] 崔亚楠,于庆年,韩吉伟,陈超. 复杂气候条件下胶粉改性沥青的低温性能[J]. 《材料导报》期刊社, 2018, 32(12): 2078-2084.
[4] 王毅, 王盼, 索红莉, 贾强, 卢东琪, 李怀洲, 吴海明. 哈氏合金电化学抛光工艺的研究*[J]. 《材料导报》期刊社, 2017, 31(2): 37-40.
[5] 尹华伟, 李明伟, 曹亚超, 程旻, 宋洁. ZTS晶体(100)面生长过程的实时AFM研究*[J]. 《材料导报》期刊社, 2017, 31(12): 15-20.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed