Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 37-40    https://doi.org/10.11896/j.issn.1005-023X.2017.02.008
  材料研究 |
哈氏合金电化学抛光工艺的研究*
王毅1, 王盼1, 索红莉1, 贾强1, 卢东琪1, 李怀洲2, 吴海明1
1 北京工业大学材料科学与工程学院,新型功能材料教育部重点实验室, 北京 100124;
2 首都航天机械公司, 北京 100076;
Study on Electropolishing of Hastelloy C-276 Alloy
WANG Yi1, WANG Pan1, SUO Hongli1, JIA Qiang1, LU Dongqi1,
LI Huaizhou2, WU Haiming1
1 Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124;
2 The Capital Aerospace Machinery Company, Beijing 100076;
下载:  全 文 ( PDF ) ( 1724KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用环保型抛光液对离子束辅助沉积技术路线用哈氏合金HastelloyC-276基带进行了电化学抛光,获得了典型的阳极极化曲线,并阐述了电化学抛光的机理。研究了影响电化学抛光的因素(电解液温度、抛光时间、抛光极距)对基带表面粗糙度的影响,优化工艺参数获得了表面粗糙度Ra<5 nm(5 μm × 5 μm)的高质量表面,满足后续生长过渡层对哈氏合金基带的要求。抛光液中的柠檬酸在50 ℃左右分解成络合剂,可迅速沉淀金属离子,提高表面的活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王毅
王盼
索红莉
贾强
卢东琪
李怀洲
吴海明
关键词:  表面粗糙度  哈氏合金  电化学抛光  原子力显微镜    
Abstract: The environmental friendly polishing liquid was used to polish the surface of Hastelloy C-276 alloy substrate, which was used for the technical route of ion beam assisted deposition (IBAD).The typical curve of anodic polarization was obtained, and the mechanism of electrochemical polishing was described. The effect of electrochemical polishing elements (such as electrolytic polishing temperature, polishing time and polishing distance) on the roughness of substrate′s surface was investigated. The high quality surface with the roughness lower than 5 nm (in the area of 5 μm×5 μm) was obtained via the optimized polishing processes, which satisfied to the requirements of surface roughness for the subsequent deposition by IBAD. Citric acid in polishing liquid decomposed into a complexing agent at about 50 ℃, which could accelerate the precipitation of metal ions and increase the reactivity of surface.
Key words:  surface roughness    Hastelloy alloy    electrochemical polishing    atomic force microscopy
出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TM26  
基金资助: *国家自然科学基金(51571002);国家青年科学基金(51401003);京津冀合作青年基金
作者简介:  王毅:男,1980年生,博士, 讲师, 主要从事功能涂层、超导材料等方面的研究 E-mail:wangyibg@bjut.edu.cn
引用本文:    
王毅, 王盼, 索红莉, 贾强, 卢东琪, 李怀洲, 吴海明. 哈氏合金电化学抛光工艺的研究*[J]. 《材料导报》期刊社, 2017, 31(2): 37-40.
WANG Yi, WANG Pan, SUO Hongli, JIA Qiang, LU Dongqi,
LI Huaizhou, WU Haiming. Study on Electropolishing of Hastelloy C-276 Alloy. Materials Reports, 2017, 31(2): 37-40.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.008  或          https://www.mater-rep.com/CN/Y2017/V31/I2/37
1 Kim K T, et al. Development of cube-textured Ni-W alloy substrates for YBCO-coated conductor[J]. Physica C,2004,412(9):859.
2 Celentano G, Varesi E, Petrison T, et al. Influence of the substrate microstructure on the superconducting properties of YBCO coated conductors[J]. IEEE Trans Appl Supercond,2003,13(2):2591.
3 Teranishi R, Izumi T, Shiohara Y. Highlights of coated conductor development in Japan[J]. Supercond Sci Technol,2006,19(3):4.
4 Fenga F, Shia K, Xiaoa S Z, et al. Fractal analysis and atomic force microscopy measurements of surface roughness for Hastelloy C276 substrates and amorphous alumina buffer layers in coated conductors[J]. Appl Surf Sci,2012,258(8):3502.
5 Sarma V S, Boer B, Reger N, et al. Ni and Ni-alloy tapes with a very strong cube texture as substrates for high temperature superconducting tapes[J]. Mater Sci Forum,2002,408:1561.
6 Prusseit W,Nemetschek R,Hoffmann C, et al. ISD process development for coated conductors[J]. Physica C,2005,426:866.
7 Wang Q Y, Bai S L, Zhao Y H, et al. Effect of mechanical polishing on corrosion behavior of Hastelloy C22 coating prepared by high po-wer diode laser cladding[J]. Appl Surf Sci,2014,303(6):312.
8 Hu Y N, et al. Surface quality analysis of the electropolishing of cemented carbide[J]. J Mater Processing Technol,2013,139(1):253.
9 Hryniewicz T,Rokosz K,Rokicki R. Electrochemical and XPS stu-dies of AISI 316L stainless steel after electropolishing in a magnetic field[J].Corros Sci,2008,50:2676.
10 Fang J L. Polishing technology of metal materials[M]. Beijing: National Defence Industry Press,2005:76.
11 Wang X, et al. Electropolishing of Ni-5at.%W substrates for YBCO coated conductors [J]. Mater Chem Phys,2012,133(1):212.
12 Feng F, Liu R, Chen H, et al. Substrate surface treatment and YSZ buffer layers by IBAD method for coated conductors[J]. Physica C,2009,469(15-20):1367.
13 Alanis I L, Schiffrin D J. The influence of mass transfer on the mechanism of electropolishing of nickel in aqueous sulphuric acid[J]. Electrochimica Acta,1982,27(7):837.
[1] 郭明荣, 鲁艳军, 陈润华. 石英玻璃微流道超声振动磨削加工及流动阻力特性研究[J]. 材料导报, 2023, 37(17): 22040004-7.
[2] 刘金超, 崔洁. 原子力显微镜的工作原理及其在电化学原位测试中的应用[J]. 材料导报, 2022, 36(14): 21030036-11.
[3] 周强, 田业冰, 于宏林, 范增华, 钱乘, 孙志光. 超粗糙氧化锆复合陶瓷磁性剪切增稠光整加工特性[J]. 材料导报, 2021, 35(z2): 97-100.
[4] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[5] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[6] 陈立杭, 张绫芷, 沈彩, 刘兆平. AFM峰值力轻敲模式下石墨烯与迈科烯结构稳定性的比较[J]. 材料导报, 2021, 35(22): 22006-22010.
[7] 卢爽, 刘琳, 谢锦印, 武亚琪, 邢锦娟. 2-氨基苯并咪唑缩对甲基苯甲醛席夫碱的合成及缓蚀性能[J]. 材料导报, 2021, 35(20): 20195-20199.
[8] 郭翠霞, 吴张永, 谢文玲, 张建平, 张莲芝, 邹应辉. 基于SiC纳米工作液和常规乳化液的高速走丝电火花线切割加工表面特性的对比研究[J]. 材料导报, 2021, 35(10): 10166-10170.
[9] 梁静静, 张相召, 赵光辉, 刘桂武, 邵海成, 乔冠军. 磨削加工对Al2O3陶瓷表面质量与力学性能的影响[J]. 材料导报, 2020, 34(16): 16020-16024.
[10] 马英怡, 刘玉德, 石文天, 韩冬, 侯岩军. 芳纶纤维增强复合材料的微铣削与铣磨精加工[J]. 材料导报, 2020, 34(16): 16177-16181.
[11] 肖长江, 窦志强, 朱振东. 氧化铁刻蚀金刚石表面形貌的表征及形成机理[J]. 材料导报, 2020, 34(14): 14045-14050.
[12] 王威娜, 徐青杰, 周圣雄, 秦煜, 闫强. 沥青-集料黏附作用评价方法综述[J]. 材料导报, 2019, 33(13): 2197-2205.
[13] 宋博, 陈旭. 扫描Kelvin探针力显微镜:工作原理及在材料腐蚀研究中的应用[J]. 《材料导报》期刊社, 2018, 32(7): 1151-1157.
[14] 孙书兵, 刘艳松, 何小珊, 王锋, 何智兵, 黄景林, 刘磊. 空心微球上Al-W多层涂层的制备与表征[J]. 材料导报, 2018, 32(24): 4297-4302.
[15] 崔亚楠,于庆年,韩吉伟,陈超. 复杂气候条件下胶粉改性沥青的低温性能[J]. 《材料导报》期刊社, 2018, 32(12): 2078-2084.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed