Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3444-3455    https://doi.org/10.11896/j.issn.1005-023X.2018.19.019
  金属与金属基复合材料 |
热喷涂涂层缺陷形成机理与组织结构调控研究概述
周超极,朱胜,王晓明,韩国峰,周克兵,徐安阳
陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
A Review on Thermally Sprayed Coating Defects Formation Mechanism and Microstructure Modification
ZHOU Chaoji, ZHU Sheng, WANG Xiaoming, HAN Guofeng, ZHOU Kebing, XU Anyang
National Key Laboratory for Remanufacturing, Academy of Army Armored Force, Beijing 100072
下载:  全 文 ( PDF ) ( 3746KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热喷涂技术是再制造工程的关键支撑技术之一,在高端装备零部件防磨抗蚀方面发挥着重要作用,是延长损伤零部件服役寿命的重要手段。热喷涂技术主要应用于装备零部件的表面防护、尺寸恢复和增材制造,在航空航天、燃气轮机、石油化工、交通运输等领域具有广阔的应用前景和发展空间。
然而,随着复杂工况条件下高端装备对涂层性能要求的不断提高以及其他表面技术的蓬勃发展,热喷涂技术面临着提高涂层质量和性能的挑战。就涂层可靠性而言,由于热喷涂涂层层间结合有限、内部缺陷复杂,导致热喷涂涂层,特别是敏感材料的涂层质量通常不稳定,涂层抗拉、抗扭以及抗剪切性能较差,无法应用于高速、重载等环境。因此,阐明热喷涂涂层的缺陷形成机理,发展热喷涂涂层组织结构调控的新方法是近期热喷涂领域的研究热点和重要方向。国内外众多学者通过多年深入研究,采用SEM、TEM、MIP、XMT等手段表征了热喷涂涂层内部缺陷的形成机制与分布规律,建立了涂层微观结构参量与涂层重要力学指标间的映射关系模型,证实了涂层内部固有微观缺陷是限制涂层性能提升的关键症结。为突破制约涂层性能提升的瓶颈,研究者们致力于热喷涂涂层后处理理论及工艺研究,从组织结构调控的角度出发,改善涂层的性能。目前所采用的后处理方法主要包括重熔处理、退火处理、热等静压、喷丸和滚压强化等,有力地消除或减少了涂层内部的贯通孔隙,提高了粒子间的边界融合,改善了涂层内部残余应力的分布状况,提升了涂层的力学性能、耐磨损及抗腐蚀性能。但是从实际应用的角度考虑,目前采用的后处理方法的处理温度通常较高,装备零部件长时间处于高温处理环境,可能会使涂层或基体材料的组织劣化,失去组织结构调控的意义。所以,现有热喷涂涂层组织结构调控方法的应用范围有限,针对热喷涂涂层的孔隙、裂纹等缺陷的改善尚无万全之策,仍需研究和发展涂层组织结构调控的新理论、新方法。
高密度脉冲电流处理是一种对材料的极端非平衡处理过程,国内外学者在电致塑性、电致损伤愈合、电致晶粒细化等方面做了大量研究工作,并取得了丰硕的成果。从理论上讲,对于非均质的热喷涂涂层而言,由组织结构取向差异造成的内部电流场分布不均,在缺陷或夹杂周围会发生绕流集中现象,在脉冲电流的电、热、力效应耦合作用下有望提高涂层的均一性和致密性,实现涂层组织结构的调控和使役性能的改善。
本文归纳了热喷涂涂层制备技术的优缺点、涂层缺陷形成机理及其对性能的影响规律,分析了现有涂层组织结构调控方法的利弊,介绍了脉冲电流在金属材料中的电、热、力效应,总结并分析了高密度脉冲电流处理方法在实现非均质热喷涂涂层组织结构调控和性能提升方面的理论可行性,并进行了初步实验验证,以期为丰富热喷涂涂层后处理方法、拓展热喷涂技术的应用领域提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周超极
朱胜
王晓明
韩国峰
周克兵
徐安阳
关键词:  热喷涂涂层  缺陷形成机理  结构调控    
Abstract: As one of the key supporting technologies of remanufacturing engineering, thermal spraying technology plays an important role in anti-wear and corrosion protection of high-end equipment parts, and is also a crucial mean to prolong service life for damaged parts. It has a broad application prospect and development space in the aspects of surface protection, dimensional recovery and additive manufacturing for equipment components in the field of aerospace, gas turbine, petrochemical and transportation.
On the other hand, with the requirement constant promotion of high-end equipment for coating service performance and conti-nued development of other surface technologies, thermal spraying technology is increasingly facing the challenge of improving coating quality and performance. In terms of coating reliability, bad adhesion and internal defects in the interlayers of thermal spraying coa-ting may be causing the instability of coating quality such as poor tensile, torsion or shear resistance properties especially for the sensitive material. As a result, thermal sprayed coatings cannot be applied to high-speed reloading environment. Therefore, elucidating defect formation and structure modification mechanism of thermal sprayed coatings is the hot spot and important direction in the field of thermal spraying. Through several years of research, many scholars have characterized the formation mechanism and distributing disciplinarian of internal defects of thermal spray coating by SEM, TEM, MIP, XMT, etc. and established the mapping relation model between coating microstructure parameters and coating mechanical behavior, which proves that the inherent microscopic defects of coating are the key sticking point to limit coating performance. In order to break through the bottleneck that restricts the performance of coatings, researchers are committed to the research of theory and technology of thermal sprayed coating post-processing, and begin to improve the performance of coatings from the perspective of organizational structure modification. At present, the post processing method mainly includes remelting, annealing, hot isostatic pressing, shot peening and rolling. Those methods effectively eliminate or reduce the connected pores, enhance the boundary fusion between particles, and improve the residual stress distribution in the coating. In the end, the mechanical properties, wear resistance and corrosion resistance of the thermal sprayed coating are improved partly. From the perspective of practical application, the post processing methods adopted at present have the characteristics of high temperature. However, equipment parts for a long time in high temperature environment may make tissue degradation of the coating or substrate material, and it will lose the significance of structure modification. Overall, the application scope of existing organizational structure modification methods to thermal sprayed coating is limited. There is also no a surefire plan to improve pores, cracks or other defects in the thermal sprayed coating, and it is necessary to study and develop the new theory of thermal sprayed coating structure modification.
High density pulse current treatment is an extreme non-equilibrium process for materials. Many scholars have done a lot of research in electroplasticity, electrical damage healing, and electrical grain refinement, and have achieved fruitful results. Theoretically, for inhomogeneous thermal spray coating, there will occur “flow around” phenomenon in or around the defects under the action of the high density pulse current. The electric, thermal and force effects of the pulse current may improve the uniformity of the coating, and realize the regulation of coating structure and the improvement of service performance.
In this review, advantages and disadvantages of different thermal sprayed technology, mechanism of coating defect formation, the influence of defect on performance, and pros and cons of existing coating structure or performance modified methods are analyzed in detail. The electric-thermal-force effect of pulse current in metallic materials is introduced, and the feasibility and preliminary experimental verification of high density pulse current treatment in improvement of thermal sprayed coating structure and performance are analyzed and conducted.
Key words:  thermally sprayed coating    defects formation mechanism    microstructure modification
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  TG174.442  
基金资助: 国家自然科学基金(51775556;51375493);国际科技合作专项(2015DFG51920)
作者简介:  周超极:男,1991年生,博士研究生,研究方向为热喷涂技术 E-mail:zhoucj66@163.com ;朱胜:通信作者,男,1964年生,博士,教授,博士研究生导师,研究方向为表面工程与再制造 E-mail:zusg@sina.com
引用本文:    
周超极, 朱胜, 王晓明, 韩国峰, 周克兵, 徐安阳. 热喷涂涂层缺陷形成机理与组织结构调控研究概述[J]. 材料导报, 2018, 32(19): 3444-3455.
ZHOU Chaoji, ZHU Sheng, WANG Xiaoming, HAN Guofeng, ZHOU Kebing, XU Anyang. A Review on Thermally Sprayed Coating Defects Formation Mechanism and Microstructure Modification. Materials Reports, 2018, 32(19): 3444-3455.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.019  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3444
1 Zhu S. Mobile additive remanufacturing[J].Journal of Mechanical Engineering,2013,49(23):1(in Chinese).
朱胜.柔性增材再制造技术[J].机械工程学报,2013,49(23):1.
2 中华人民共和国国务院.国务院关于印发《中国制造2025》的通知,国发〔2015〕28号[Z].2015-05-08.
3 Pawlowski L. The science and engineering of thermal spray coatings, second edition[M].New York:John Wiley & Sons,2008:15.
4 Hickman R, Mckechnie T, Elam S, et al. Material properties of net shape, vacuum plasma sprayed GRCop-84[C]∥AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville,2013:133.
5 Baranovski V E, Baranovski A V. Gas dynamic cold spray method and apparatus: US, 20160047052[P].2016-02-18.
6 Xu X, Gu J Y, Gu W H, et al. Research status and application progress of plasma spray forming technology[J].China Tungsten Industry,2015(3):43(in Chinese).
徐玄,顾进跃,顾伟华,等.等离子喷涂成形技术的研究现状和应用进展[J].中国钨业,2015(3):43.
7 Ang A S M, Sanpo N, Sesso M L, et al. Thermal spray maps: Material genomics of processing technologies[J].Journal of Thermal Spray Technology,2013,22(7):1170.
8 Saber-Samandari S, Berndt C C. Thermal spray coatings: A techno-logy review[J].International Heat Treatment & Surface Enginee-ring,2010,4:7.
9 Stoltenhoff T, Borchers C, G rtner F, et al. Microstructures and key properties of cold-sprayed and thermally sprayed copper coatings[J].Surface & Coatings Technology,2006,200(16-17):4947.
10 Zhang P, Zhou Z, He D Y, et al. Effects of spraying parameters and related particle status on coating bond strength[J].Thermal Spray Technology,2015,7(1):27(in Chinese).
张鹏,周正,贺定勇,等.喷涂工艺及其粒子状态对涂层结合强度的影响[J].热喷涂技术,2015,7(1):27.
11 Li C J, Yang G J, Li C X. Development of particle interface bonding in thermal spray coatings: A review[J].Journal of Thermal Spray Technology, 2013, 22(2):192.
12 Cinca N, Lima C R C, Guilemany J M. An overview of intermetallics research and application: Status of thermal spray coatings[J].Journal of Materials Research & Technology,2013,2(1):75.
13 Suidzu T, Nishizako S, Arai M. Influence of thermal spray process on high temperature oxidation property of CoNiCrAlY coatings[J].Journal of the Society of Materials Science Japan,2016,65(4):313.
14 Chen L, Yang G J, Li C X, et al. Thermally sprayed ceramic coa-tings for wear-resistant application and coating structure tailoring towards advanced wear-resistant coatings[J].Advanced Ceramics,2016,37(1):3(in Chinese).
陈林,杨冠军,李成新,等.热喷涂陶瓷涂层的耐磨应用及涂层结构调控方法[J].现代技术陶瓷,2016,37(1):3.
15 Ang A S M, Berndt C C. A review of testing methods for thermal spray coatings[J].International Materials Reviews,2014,59(4):179.
16 Ohmori A, Li C J. Quantitative characterization of the structure of plasma-sprayed Al2O3 coating by using copper electroplating[J].Thin Solid Films,1991,201(2):241.
17 Marthe J, Meillot E, Jeandel G, et al. Explorations and 3D models of atmospheric and suspension plasma spraying coating microstructure[J].Surface & Coatings Technology,2015,268:266.
18 Berndt C C,McPherson R. A fracture mechanics approach to the adhesion of flame and plasma sprayed coatings[C]∥Proceedings of the 9th International Thermal Spray Conference.Hague:ASM International,1980.
19 Li C J, Ohmori A. Relationships between the microstructure and properties of thermally sprayed deposits[J].Journal of Thermal Spray Technology,2003,12(1):6.
20 Wang S Y, Li G L, Wang H D, et al. Influence of microdefect on rolling contact fatigue performance of thermal spraying coating[J].Journal of Materials Engineering,2012,19(2):72(in Chinese).
王韶云,李国禄,王海斗,等.微缺陷对热喷涂涂层接触疲劳性能的影响[J].材料工程,2012,19(2):72.
21 Westerg rd R, Axén N, Wiklund U, et al. An evaluation of plasma sprayed ceramic coatings by erosion, abrasion and bend testing[J].Wear,2000,246(1-2):12.
22 Wang W Z, Li C J, Wang Y Y. Effect of spray distance on the mechanical properties of plasma sprayed Ni45Cr coatings[J].Materials Transactions,2006,47(7):1643.
23 Ohmori A, Li C J, Arata Y. Influence of plasma spray conditions on the structure of Al2O3 coatings [J].Transactions of the Japan Wel-ding Research Institute,1990,19(2):259.
24 Kulkarni A, Gutleber J, Sampath S, et al. Studies of the microstructure and properties of dense ceramic coatings produced by high-velocity oxygen-fuel combustion spraying[J].Materials Science & Engineering A,2004,369(1):124.
25 Zhao X B, Yan D R, Dong Y C, et al. Electrochemical corrosion resistance of TiN coatings by reactive plasma spraying after heat treatment[J].Transactions of Materials & Heat Treatment,2012,33(4):121(in Chinese).
赵雪勃,阎殿然,董艳春,等.反应等离子喷涂TiN涂层热处理后的电化学腐蚀性能[J].材料热处理学报,2012,33(4):121.
26 Cheng Z M, Deng C M, Lin Q S, et al. Microstructure and electrochemical corrosion of Ti coatings[J].Thermal Spray Technology,2013,5(4):17(in Chinese).
程正明,邓春明,林秋生,等.钛涂层的显微结构和电化学腐蚀性能研究[J].热喷涂技术,2013,5(4):17.
27 Zhao Z P, Li X Y. The influence of remelting treatment on fatigue performance of flame thermal spraying components with Ni60A coa-ting[J].Powder Metallurgy Technology,2015,33(4):285(in Chinese).
赵志平,李新勇.重熔处理对火焰热喷涂Ni60A涂层件疲劳性能的影响[J].粉末冶金技术,2015,33(4):285.
28 Milanti A, Koivuluoto H, Vuoristo P, et al. Microstructural characteristics and tribological behavior of HVOF-sprayed novel Fe-based alloy coatings[J].Coatings,2014,4(1):98.
29 Milanti A, Matikainen V, Bolelli G, et al. Microstructure and sliding wear behavior of Fe-based coatings manufactured with HVOF and HVAF thermal spray processes[J].Journal of Thermal Spray Technology,2016,25(5):1040.
30 Ji C H, Sun Z, Yang L, et al. Effect of oxidation process on binding properties of titanium alloy/coating during thermal spraying[J].Journal of Civil Aviation University of China,2014,32(1):37(in Chinese).
纪朝辉,孙振,杨律,等.热喷涂过程氧化对钛合金/涂层结合性能的影响[J].中国民航大学学报,2014,32(1):37.
31 Milanti A, Matikainen V, Koivuluoto H, et al. Effect of spraying parameters on the microstructural and corrosion properties of HVAF-sprayed Fe-Cr-Ni-B-C coatings[J].Surface & Coatings Technology,2015,277:81.
32 Wang K, Kong L, Tao Y, et al. Numerical simulation of minimal average bonding strength to suppress rebounding in cold spraying Cu/Cu: A preliminary study[J].Journal of Thermal Spray Techno-logy,2015,24(1):75.
33 Majumdar J D. Thermal and cold spraying technology in manufactu-ring[M].London:Springer,2013:2831.
34 Vidaller M V, List A, Gaertner F, et al. Single impact bonding of cold sprayed Ti-6Al-4V powders on different substrates[J].Journal of Thermal Spray Technology,2015,24(4):644.
35 Drehmann R, Grund T, Lampke T, et al. Interface characterization and bonding mechanisms of cold gas-sprayed Al coatings on ceramic substrates[J].Journal of Thermal Spray Technology,2015,24(1):92.
36 Xie Y, Yin S, Chen C, et al. New insights into the coating/substrate interfacial bonding mechanism in cold spray[J].Scripta Materialia,2016,125:1.
37 Kang K, Yoon S, Ji Y, et al. Oxidation dependency of critical velocity for aluminum feedstock deposition in kinetic spraying process[J].Materials Science & Engineering A,2008,486(1):300.
38 Fukumoto M, Mashiko M, Yamada M, et al. Deposition behavior of copper fine particles onto flat substrate surface in cold spraying[J].Journal of Thermal Spray Technology,2010,19(1):89.
39 Li W Y, Li C J, Liao H. Significant influence of particle surface oxidation on deposition efficiency, interface microstructure and adhesive strength of cold-sprayed copper coatings[J].Applied Surface Science,2010,256(16):4953.
40 Li W Y, Zhang D D, Huang C J, et al. State-of-the-art of particles impacting behavior and prediction of critical velocity for cold spraying by numerical simulations[J].China Surface Engineering,2014,27(1):1(in Chinese).
李文亚,张冬冬,黄春杰,等.冷喷涂粒子碰撞行为和临界速度预测的数值模拟研究现状[J].中国表面工程,2014,27(1):1.
41 Saleh M, Luzin V, Spencer K. Analysis of the residual stress and bonding mechanism in the cold spray technique using experimental and numerical methods[J].Surface & Coatings Technology,2014,252(9):15.
42 Mailhot G, Yang M, Mason-Savas A, et al. Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process[J].Applied Surface Science,2003,219(3-4):211.
43 Ajdelsztajn L, Schoenung J M, Jodoin B, et al. Cold spray deposition of nanocrystalline aluminum alloys[J].Metallurgical and Materials Transactions A,2005,36(3):657.
44 List A, G rtner F, Mori T, et al. Cold spraying of amorphous Cu50-Zr50 alloys[J].Journal of Thermal Spray Technology,2015,24(1):108.
45 Xiong Y, Bae G, Xiong X, et al. The Effects of successive impacts and cold welds on the deposition onset of cold spray coatings[J].Journal of Thermal Spray Technology,2010,19(3):575.
46 King P C, Zahiri S H, Jahedi M. Microstructural refinement within a cold-sprayed copper particle[J].Metallurgical and Materials Transactions A,2009,40(9):2115.
47 Li W Y, Li C J. Characteristics of cold spray process[J].China Surface Engineering,2002,15(1):12(in Chinese).
李文亚,李长久.冷喷涂特性[J].中国表面工程,2002,15(1):12.
48 Verdian M M. 3.13 finishing and post-treatment of thermal spray coatings[J].Comprehensive Materials Finishing,2017,3:191.
49 Molak R M, Araki H, Watanabe M, et al. Effects of spray parameters and post-spray heat treatment on microstructure and mechanical properties of warm-sprayed Ti-6Al-4V coatings[J].Journal of Thermal Spray Technology,2017,26(4):1.
50 Benegra M, Santana A L B, Maranho O, et al. Effect of heat treatment on wear resistance of nickel aluminide coatings deposited by HVOF and PTA[J].Journal of Thermal Spray Technology,2015,24(6):1111.
51 Dikici B, Yilmazer H, Ozdemir I, et al. The effect of post-heat treatment on microstructure of 316L cold-sprayed coatings and their corrosion performance[J].Journal of Thermal Spray Technology,2016,25(4):704.
52 Fauchais P L, Heberlein J V R, Boulos M I. Thermal spray fundamentals[M].London: Springer,2014:1384.
53 Serres N, Hlawka F, Costil S, et al. Microstructures of metallic NiCrBSi coatings manufactured via hybrid plasma spray and in situ laser remelting process[J].Journal of Thermal Spray Technology,2011,20(1):336.
54 Zhao Z P, Li Y T, Li X Y. Effects of remelting time on fatigue life and wear performance of thermal spray welding components[J].Transactions of Materials & Heat Treatment,2013,34(7):169(in Chinese).
赵志平,李有堂,李新勇.重熔时间对热喷焊件疲劳寿命及磨损性能的影响[J].材料热处理学报,2013,34(7):169.
55 Li W Y, Li C J, Liao H. Effect of annealing treatment on the microstructure and properties of cold-sprayed Cu coating[J].Journal of Thermal Spray Technology,2006,15(2):206.
56 Meng X M, Liang Y L, Han W, et al. Influence of annealing treatment on microstructure and corrosion behaviour of cold sprayed 304 stainless steel coatings[J].Transactions of Materials & Heat Treatment,2011,32(2):124(in Chinese).
孟宪明,梁永立,韩玮,等.退火处理对冷喷涂304SS涂层组织与耐蚀性能的影响[J].材料热处理学报,2011,32(2):124.
57 G rtner F, Stoltenhoff T, Voyer J, et al. Mechanical properties of cold-sprayed and thermally sprayed copper coatings[J].Surface & Coatings Technology,2006,200(24):6770.
58 Molak R M, Araki H, Watanabe M, et al. Effects of spray parameters and heat treatment on the microstructure and mechanical pro-perties of titanium coatings formed by warm spraying[J].Journal of Thermal Spray Technology,2015,24(8):1459.
59 Wang J, Kong L, Li T, et al. Microstructure evolution of cold-sprayed Al-Si alloy coatings on γ-TiAl during heat treatment[J].Journal of Thermal Spray Technology,2015,24(6):1071.
60 Zhang H B, Zhang J B, Liang Y L,et al. Effect of annealing treatment on microstructures and mechanical properties of cold sprayed Ni coating[J].Baosteel Technology,2009(1):46(in Chinese).
章华兵,张俊宝,梁永立,等.退火处理对冷喷涂Ni涂层组织与力学性能的影响[J].宝钢技术,2009(1):46.
61 Shi H X, Xie G, He X C, et al. Several applications and development trend of HIP technology[J].Yunnan Metallurgy,2013,42(5):52(in Chinese).
施辉献,谢刚,和晓才,等.热等静压技术的若干应用及发展趋势[J].云南冶金,2013,42(5):52.
62 Khor K A, Loh N L. Hot isostatic pressing of plasma sprayed Ni-base alloys[J].Journal of Thermal Spray Technology,1994,3(1):57.
63 Abdel-Samad A, Lugscheider E, Bobzin K, et al. The influence of hot isostatic pressing on plasma sprayed coatings properties[J].Surface & Coatings Technology,2006,201(3-4):1224.
64 Wei S H, Ji Q, Zhang R Q, et al. Effect of hot isostatic pressing on microstructure and mechanical properties of plasma sprayed tantalum coating on tungsten substrate[J].Journal of Materials Protection,2013,46(11):6(in Chinese).
魏少红,纪全,张锐强,等.热等静压对钨基体表面等离子喷涂钽层组织及性能的影响[J].材料保护,2013,46(11):6.
65 Zhou W B, Yao Z J, Wei D B, et al. Effect of hot isostatic pressing on corrosion resistance of Zn-Al-Si alloy coating[J].The Chinese Journal of Nonferrous Metals,2013(10):2882(in Chinese).
周文斌,姚正军,魏东博,等.热等静压处理对Zn-Al-Si合金涂层耐蚀性能的影响[J].中国有色金属学报,2013(10):2882.
66 Jiang Z Y, Zhang P, Bao J W, et al. Current applications of isostatic pressing technology in materials processing field[J].Aerospace Materials & Technology,2017,47(1):13(in Chinese).
姜卓钰,张朋,包建文,等.等静压技术在材料加工领域的应用现状[J].宇航材料工艺,2017,47(1):13.
67 Xue W J, Liu L S, Wang K Y, et al. Application and development trend of shot peening treatment technologies[J].Journal of Materials Protection,2014,47(5):46(in Chinese).
薛雯娟,刘林森,王开阳,等.喷丸处理技术的应用及其发展[J].材料保护,2014,47(5):46.
68 Junior G S, Voorwald H J C, Vieira L F S, et al. Evaluation of WC-10Ni thermal spray coating with shot peening on the fatigue strength of AISI 4340 steel[J].Procedia Engineering,2010,2(1):649.
69 Xie Ruiguang, Li Changjiu, Cui Hong. The influence of densification on the high temperature oxidation behavior of NiAl coating by cold spraying[J].Materials Review,2016,30(S2):531(in Chinese).
谢瑞广,李长久,崔红.致密化处理对冷喷涂NiAl涂层的高温氧化行为的影响[J].材料导报,2016,30(专辑28):531.
70 Karaoglanli A C, Doleker K M, Demirel B, et al. Effect of shot peening on the oxidation behavior of thermal barrier coatings[J].Applied Surface Science,2015,354:314.
71 Nam Y S, Jeon U, Yoon H K, et al. Use of response surface met-hodology for shot peening process optimization of an aircraft structu-ral part[J].International Journal of Advanced Manufacturing Technology,2016,87(9-12):1.
72 Py A, Larose S, Perron C, et al. On the effect of the peening trajectory in shot peen forming[J].Finite Elements in Analysis & Design,2013,69:48.
73 Ito H, Nakamura R, Shiroyama M. Infiltration of copper into tita-nium-molybdenum spray coatings[J].Surface Engineering,2014,4(1):35.
74 Chraska T, Pala Z, Muálek R, et al. Post-treatment of plasma-sprayed amorphous ceramic coatings by spark plasma sintering[J].Journal of Thermal Spray Technology,2015,24(4):637.
75 Jin W, Fan J F, Zhang H, et al. Microstructure, mechanical properties and static recrystallization behavior of the rolled ZK60 magne-sium alloy sheets processed by electropulsing treatment[J].Journal of Alloys & Compounds,2015,646(6):1.
76 束德林.工程材料力学性能.第2版[M].北京:机械工业出版社,2007:22.
77 Zhou Q, Li X F, Chen J, et al. Experimental study on electroplastic V-bending properties of TC4 titanium alloys[J].Journal of Plasticity Engineering,2015,22(5):52(in Chinese).
周强,李细锋,陈军,等.TC4钛合金电致塑性V型弯曲性能的实验研究[J].塑性工程学报,2015,22(5):52.
78 Song H, Wang Z J, He X D. Improving in plasticity of orthorhombic Ti2AlNb-based alloys sheet by high density electropulsing[J].Tran-sactions of Nonferrous Metals Society of China,2013,23(1):32.
79 Song H, Wang Z J. Improvement in formability of TiAl and Ti alloys by high density electropulsing[J].Materials Science & Technology,2013,21(5):117(in Chinese).
宋辉,王忠金.Ti及TiAl合金的电致增塑性[J].材料科学与工艺,2013,21(5):117.
80 Li M Q, Wu S D. Electric field modification during superplastic deformation of LY12CZ duralumin [J].Acta Metallrugica Sinica,1995,31(6):272(in Chinese).李淼泉,吴诗惇. LY12CZ铝合金超塑变形时的电场效应[J].金属学报,1995,31(6):272.
81 Xu X, Zhao Y, Ma B, et al. Rapid grain refinement of 2024 Al alloy through recrystallization induced by electropulsing[J].Materials Science & Engineering A,2014,612(9):223.
82 Zhao Y G, Zhang J T, Tan J, et al. Microstructure refinement and property improvement of metastable austenitic manganese steel induced by electropulsing[J].Journal of Iron and Steel Research(International),2014,21(7):685.
83 Zhang C J, Wang B Q, Guo J D. Ultrafine-grained structures in cold-worked H59 brass under the electropulsing treatment[J].Chinese Journal of Materials Research,2005,19(3):237(in Chinese).
张传军,王宝全,郭敬东.高密度脉冲电流处理后冷轧H59黄铜的超细晶结构[J].材料研究学报,2005,19(3):237.
84 Zhou Y, Qin R, Xiao S, et al. Reversing effect of electropulsing on damage of 1045 steel[J].Journal of Materials Research,2000,15(5):1056.
85 Zhou Y Z, Zeng Y, He G H, et al. The healing of quenched crack in 1045 steel under electropulsing[J].Journal of Materials Research,2001,16(1):17.
86 Lu Z, Guo C, Li P, et al. Effect of electropulsing treatment on microstructure and mechanical properties of intermetallic Al3Ti alloy[J].Journal of Alloys & Compounds,2017,708:834.
87 Tang Y, Hosoi A, Morita Y, et al. Restoration of fatigue damage in stainless steel by high-density electric current[J].International Journal of Fatigue,2013,56(11):69.
88 Hosoi A, Kishi T, Ju Y. Healing of fatigue crack by high-density electropulsing in austenitic stainless steel treated with the surface-activated pre-coating[J].Materials,2013,6(9):4213.
[1] 刘兆麟. 纳米蛛网纤维材料的可控构筑与应用[J]. 材料导报, 2019, 33(5): 907-916.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed