Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 907-916    https://doi.org/10.11896/cldb.201905024
  高分子与聚合物基复合材料 |
纳米蛛网纤维材料的可控构筑与应用
刘兆麟
河北科技大学纺织服装学院,石家庄 050018
Tunable Construction and Application of Nano-Cobweb Fibrous Material
LIU Zhaolin
College of Textile and Garment, Hebei University of Science and Technology, Shijiazhuang 050018
下载:  全 文 ( PDF ) ( 4812KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 静电纺丝技术以可纺原料广泛、工艺调控灵活、纺丝成本低廉等优点,已成为有效制备纳米纤维材料的重要方法之一。常规静电纺纤维的直径大多分布在100~500 nm之间,只属于纳米级纤维,并非真正的纳米材料,而仅当纤维的直径低于50 nm时其才具有显著的纳米效应。但就现有静电纺丝技术而言,难以实现50 nm以下纳米纤维的宏量制备,从而制约了其进一步的发展应用。
纳米蛛网纤维是在静电纺丝过程中偶然获得的一种新型二维网状材料,其以常规静电纺纤维为支架,具有类似蜘蛛网、肥皂泡的六边形网孔结构,网状纤维直径可达5~50 nm,较常规电纺纤维低一个数量级。纳米蛛网不仅具备普通纳米纤维的优点,还展现出以下四方面特性:(1)超细的蛛网直径;(2)极高的孔隙率和多尺度的孔径分布;(3)稳定的Steiner最小树网孔结构;(4)可控的蛛网覆盖率。纳米蛛网独特的结构和性质引起了研究者的广泛关注,已成为近年来纳米材料科学领域的研究热点。
目前,研究者制备出了以聚酰胺6(PA6)、聚丙烯酸(PAA)、聚乙烯醇(PVA)、聚丙烯腈(PAN)、聚氨酯(PU)、壳聚糖(CS)、卵磷脂等为聚合物模板的一系列纳米蛛网纤维材料,并提出了离子诱导纤维分裂成形、分子间氢键成形、次级射流缠绕成形、带电小液滴相分离成形等四种纳米蛛网成形机制。然而,纳米蛛网形态结构的精细调控十分复杂,对纺丝液本征属性(浓度、电导率、表面张力、溶剂组成)、加工参数(电压、接收距离)和环境因素(温度、相对湿度)具有高度敏感性和依赖性,导致实际纺丝过程中能否形成蛛网仍存在较大的偶然性;另一方面,有关纳米蛛网成形理论尚无统一而明确的机制。因此,需要对该材料进行全面的总结与分析,以期推动纳米蛛网纤维的可控构筑与深度开发。
本文阐述了纳米蛛网的基本特征,探讨了纳米蛛网形态生成与演变的四种机理,系统研究了原液特性、工艺参数和环境条件对其形态结构的影响规律,并对纳米蛛网在精细过滤、传感器、组织工程、高性能防护服等领域的应用进行了介绍,最后提出了今后的研究展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘兆麟
关键词:  纳米蛛网  形态特征  成形机理  结构调控  特效应用    
Abstract: Electrospinning technology with the merits of scalable synthesis from various materials, flexible process control and low cost has become a most important method for the effective preparation of nanofiber materials. However, the diameters of conventional electrospinning fibers are generally distributed from 100 nm to 500 nm, which merely belong to nanoscale fibers, only when the diameters of fibers are below 50 nm, can the materials obtain a remarkable nanometer effect. However, it is hard to achieve the mass production of nanofibers below 50 nm with the exis-ting electrospinning technology, thus restricting its further development and application.
Nano-cobweb fibers are a new type 2D mesh material accidentally obtained during the electrospinning process. which are supported by conventional electrospun fibers and have a hexagonal mesh structure similar to the spider webs and soap bubbles. Nano-cobweb fibers with the average diameter ranging from 5 nm to 50 nm, are one order of magnitude lower than that of the common electrospun fibers. Therefore, nano-cobweb fibers not only possess the general properties and functions of conventional electrospun nanofibers, but also exhibit the following characteristics: Ⅰ extremely fine diameter. Ⅱ high porosity and multi-scale pore size distribution. Ⅲ stable Steiner tree mesh structure. Ⅳ controllable coverage rate. As a result, the unique structure and properties of nano-cobweb fibers have become a research focus in recent years.
Currently, researchers have successfully prepared a series of nano-cobweb fibers via utilizing polyamide 6 (PA6), polyacrylic acid (PAA), polyvinil alcohol (PAV), polyacrylonitrile (PAN), polyurethane (PU), chitosan (CS) and lecithin, etc as templates, and proposed four nano-cobweb fibers forming mechanisms, including ion-induced fiber splitting, intermolecular hydrogen bonding, secondary jet winding and charged droplets phase separation. Nevertheless, it is worth noting that the subtle structure regulation of nano-cobwebs are rather complicated and their morphology are highly dependent upon the solution ontology (concentration, conductivity, surface tension, solvent), spinning parameters (applied voltage, tip-to-collector distance) and ambient factors (temperature, relative humidity), thus result in the formation of the cobwebs in actual spinning process that still exist occasionality. On the other hand, there is yet no clear and uniform mechanism theory on the formation of nano-cobweb structure. Therefore, it is necessary to comprehensively summarize and analyze the nano-cobweb fibers materials in order to promote their controllable construction and further development.
In this review, the fundamental characteristics of nano-cobweb fibers are illustrated and their four predominant formation and evolution mechanisms are discussed as well. The effects of original liquid properties, processing parameters and enviro nmental conditions on their morphological structure are systematically elaborated. In addition, the applications of nano-cobweb fibers in the fields of filtration, sensors, tissue engineering and high-performance protective clothing are introduced. Finally, the future research prospectsare are put forward.
Key words:  nano-cobweb fiber    structure characteristics    formation mechanism    structure regulation    special applications
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TQ340.64  
基金资助: 国家自然科学基金(51804096);河北省科技支撑计划项目(16273708D);河北科技大学五大平台开放基金课题(2018PT31)
作者简介:  刘兆麟,河北科技大学副教授。2007年6月在东华大学取得纺织工程专业学士学位,2012年在东华大学纺织学院俞建勇院士指导下取得纺织材料与纺织品设计专业博士学位,2012年10月起就任于河北科技大学纺织服装学院。研究方向涉及纳米纤维的可控制备及其在环境、能源、传感器等领域的应用,发表论文30余篇,申请发明专利8项。Liuzhaolin0508@163.com
引用本文:    
刘兆麟. 纳米蛛网纤维材料的可控构筑与应用[J]. 材料导报, 2019, 33(5): 907-916.
LIU Zhaolin. Tunable Construction and Application of Nano-Cobweb Fibrous Material. Materials Reports, 2019, 33(5): 907-916.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905024  或          http://www.mater-rep.com/CN/Y2019/V33/I5/907
1 Persano L, Camposeo A, Tekmen C, et al. Macromolecular Materials and Engineering,2013,298(5),504.
2 Sun B, Long Y Z, Zhang H D, et al. Progress in Polymer Science,2014,39(5),862.
3 Ahmed F E, Lalia B S, Hashaikeh R. Desalination,2015,356,15.
4 Huang C B, Chen S L, Lai C L, et al. Nanotechnology,2006,17(6),1558.
5 Liu B W. Controllable preparation of polyamide-56 nanofibrous/nets membranes for air filtration. Master’s Thesis, Donghua University, China,2016(in Chinese).
刘波文.尼龙56纳米蛛网纤维膜的可控制备及其空气过滤应用研究.硕士学位论文,东华大学,2016.
6 Ding B, Yu J Y. Electrospinning and nanofibers, China Textile Press, China,2011(in Chinese).
丁彬,俞建勇.静电纺丝与纳米纤维,中国纺织出版社,2011.
7 Cao X W, Wang X F, Ding B, et al. Carbohydrate Polymers,2013,92(2),2041.
8 Wang N, Wang X F, Ding B, et al. Journal of Materials Chemistry,2012,22(4),1445.
9 Yin Y, Chen Y, Yin J, et al. Nanotechnology,2006,17(19),4941.
10 Barakat N, Kanjwal M A, Sheikh F A, et al. Polymer,2009,50(18),4389.
11 Pant H R, Bajgai M P, Yi C, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2010,370(1-3),87.
12 Pant H R, Bajgai M P, Nam K T, et al. Materials Letters,2010,64(19),2087.
13 Tsou S Y, Lin H S, Wang C. Polymer,2011,52(14),3127.
14 Ding B, Si Y, Wang X F, et al. Journal of Materials Chemistry,2011,21(35),13345.
15 Zhang S C, Chen K, Yu J Y, et al. Polymer,2015,74,182.
16 Fong H, Chun I, Reneker D. Polymer,1999,40(16),4585.
17 Zhang Y, Li X T, Ding X, et al. Journal of Donghua University (English Edition),2014,31(4),511.
18 Wang Z, Zhao C C, Pan Z J. Journal of Colloid and Interface Science,2015,441,121.
19 Ding B, Li C R, Miyauchi Y, et al. Nanotechnology,2006,17(15),3685.
20 Liu Z L, Wang X, Zhang W. Cotton Textile Technology,2017,45(11),13(in Chinese).
刘兆麟,王欣,张威.棉纺织技术,2017,45(11),13.
21 Bhardwaj N, Kundu S C. Biotechnology Advances,2010,28(3),325.
22 Liu Z L. Materials Review A: Review Papers,2017,31(2),21(in Chinese).
刘兆麟.材料导报:综述篇,2017,31(2),21.
23 Wang X F, Ding B, Yu J Y, et al. Nanoscale,2011,3(3),911.
24 Yang S B, Wang X F, Ding B, et al. Nanoscale,2011,3(2),564.
25 Hu J, Wang X F, Ding B, et al. Macromolecular Rapid Communications,2011,32(21),1729.
26 Wang X F, Ding B, Yu J Y, et al. Colloids and Surfaces B: Biointerfa-ces,2011,86(2),345.
27 Wang N, Si Y, Yu J Y, et al. Materials and Design,2017,120,135.
28 Nirmala R, Nam K T, Park S J, et al. Applied Surface Science,2010,256(21),6318.
29 Yang S B. The fabrication and mechanism of polyacrylic acid nano-net. Master’s Thesis, Donghua University, China,2011(in Chinese).
杨尚斌.聚丙烯酸超细纳米蛛网的制备及成形机理研究.硕士学位论文,东华大学,2011.
30 Zhang X H, Reagan M R, Kaplan D L. Advanced Drug Delivery Reviews,2009,61(12),988.
31 Hu J P. The study on controllable preparation and performance of polyurethane nano-fiber/net. Master’s Thesis, Donghua University, China,2012(in Chinese).
胡娟平.聚氨酯纤维/纳米蛛网的可控制备及其性能研究.硕士学位论文,东华大学,2012.
32 Wang X L. Nano-nets membranes fabrication and filtration properties with double syring needles electrospinning. Master’s Thesis, Soochow University, China,2015(in Chinese).
汪小亮.双喷静电纺PA6/66纳米蛛网纤维膜的制备及其过滤性能.硕士学位论文,苏州大学,2015.
33 Wang X L, Feng X W, Pan Z J. Journal of Textile Research,2015,36(11),6(in Chinese).
汪小亮,冯雪为,潘志娟.纺织学报,2015,36(11),6.
34 Liu B W, Zhang S C, Wang X L, et al. Journal of Colloid and Interface Science,2015,457,203.
35 Yang Y J, Zhang S C, Zhao X L, et al. Separation and Purification Technology,2015,152,14.
36 Lou L H. Production and properties study of high efficiency and low pressure drop electrospun PAN nanfiber materials for filtration. Master’s Thesis, Donghua University, China,2016(in Chinese).
娄莉华.高效低阻PAN静电纺微纳米滤膜制备与性能研究.硕士学位论文,东华大学,2016.
37 Zuo F L, Zhang S C, Liu H, et al. Small,2017,13,1702139-1.
38 Ding B, Wang X F, Yu J Y, et al. Journal of Materials Chemistry,2011,21(34),12784.
39 Wang X F, Ding B, Yu J Y, et al. Journal of Materials Chemistry,2011,21(40),16231.
40 Li Y, Si Y, Weng X Q, et al. Biosensors and Bioelectronics,2013,48,22.
41 Sell S, Barnes C, Smith M, et al. Polymer International,2007,56(11),1349.
42 Nirmala R, Navamathavan R, Kang H S, et al. Colloids and Surfaces B: Biointerfaces,2011,83(1),173.
43 Nirmala R, Kang H S, El-Newehy M H, et al. Journal of Nanoscience and Nanotechnology,2011,11(6),4749.
44 Thandavamoorthy S, Gopinath N, Ramkumar S S. Journal of Applied Polymer Science,2006,101(5),3121.
45 Pant H R, Bajgai M P, Nam K T, et al. Journal of Hazardous Materials,2011,185(1),124.
[1] 周超极, 朱胜, 王晓明, 韩国峰, 周克兵, 徐安阳. 热喷涂涂层缺陷形成机理与组织结构调控研究概述[J]. 材料导报, 2018, 32(19): 3444-3455.
[2] 刘兆麟. 静电纺串珠纤维形貌结构及载药性能的研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 21-25.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed