Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22080031-12    https://doi.org/10.11896/cldb.22080031
  金属与金属基复合材料 |
等离子喷涂熔滴铺展凝固行为研究现状
肖嵩1,2, 刘明2,*, 张小龙1, 黄艳斐2, 王海斗2
1 三峡大学机械与动力学院,湖北 宜昌 443002
2 中国人民解放军陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Research Status of Molten Droplet Spreading and Solidification Behaviour in Plasma Spraying
XIAO Song1,2, LIU Ming2,*, ZHANG Xiaolong1, HUANG Yanfei2, WANG Haidou2
1 College of Mechanics and Power, China Three Gorges University, Yichang 443002, Hubei, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces of PLA, Beijing 100072, China
下载:  全 文 ( PDF ) ( 27420KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 等离子喷涂实质上是以等离子气体为热源,将金属或陶瓷粉末加热成具有一定温度和速度的熔滴,并撞击基体表面而在基体上铺展凝固的过程,该过程对涂层质量具有重要影响。本文从单个和多个熔滴的铺展凝固行为、铺展凝固的影响因素以及熔滴凝固时产生键合和裂纹的原因三个方面,综述了等离子喷涂过程中熔滴撞击、铺展、凝固过程。当冷却速率不同时,熔滴撞击基体后会出现先铺展后凝固和边铺展边凝固两种行为;由于后续熔滴撞击位置的不同,材料会出现不同类型的孔隙;由于晶格参数和过冷度的不同,凝固方式主要有非稳态凝固和外延生长;影响铺展凝固的因素有气体捕获、熔滴底层凝固和基体预热等;提高粒子温度和基体温度、减少基体传热可以促进凝固过程中界面结合;合适的分段裂纹密度可以显著提升涂层性能。通过研究熔滴铺展凝固行为和堆叠过程,可以明确涂层内部缺陷的形成原因,完善对涂层形成机理的认识,更加科学地指导涂层质量调控。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖嵩
刘明
张小龙
黄艳斐
王海斗
关键词:  等离子喷涂  铺展行为  凝固机理  衬底温度  冶金结合  裂纹    
Abstract: Plasma spraying is essentially a process of using plasma gas as a heat source to heat metal or ceramic powder to droplets under a certain temperature and speed. These droplets hit, spread and solidify on the surface of the substrate. This process has an important impact on the quality of the coating. In this paper, three aspects of the process of droplet impact, spreading, and solidification in plasma spraying are summarized: the spread-solidification behaviour of single and multiple droplets, factors influencing spread-solidification, and causes of bonding and cracks during droplet solidification. When the cooling rate differs, the molten droplets first spread and then solidify, or they solidify while spreading after hitting the substrate. Different types of pores appear because of the different positions of the subsequent droplet impacts. Given the different lattice parameters and subcooling degrees, the solidification mode primarily includes unsteady solidification and epitaxial growth. The factors affecting spread-solidification are gas capture, droplet bottom solidification, and matrix preheating. Increasing the particle and matrix temperatures and reducing the heat transfer of the matrix can promote interfacial bonding during solidification, and the appropriate piecewise crack density can improve the performance of the coating significantly. Examining the droplet spread-solidification behaviour and stacking process can clarify the cause of formation of internal defects in the coating and improve understanding of the formation mechanism of the coating. Thus, the quality control of the coating can be guided more scientifically.
Key words:  plasma spraying    spreading behaviour    solidification mechanism    substrate temperature    metallurgical bonding    crack
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TG174  
基金资助: 国家自然科学基金 (52075542;52130509;52105235);十四五预研项目
通讯作者:  *刘明,中国人民解放军陆军装甲兵学院装备再制造技术国防科技重点实验室助理研究员。长期从事表面涂层、等离子喷涂方面的研究工作,先后主持或参与国家级及军队级科研项目10余项,其中主持装发预研重点基金项目1项、武器装备预研基金项目2项,获军队科技进步二等奖2项。授权国家(国防)发明专利20余项,发表论文40余篇。   
作者简介:  肖嵩,2021年6月毕业于三峡大学,获得工学学士学位。现为三峡大学机械与动力学院硕士研究生,在刘明助理研究员的指导下进行研究。目前主要研究领域为等离子喷涂技术。
引用本文:    
肖嵩, 刘明, 张小龙, 黄艳斐, 王海斗. 等离子喷涂熔滴铺展凝固行为研究现状[J]. 材料导报, 2024, 38(6): 22080031-12.
XIAO Song, LIU Ming, ZHANG Xiaolong, HUANG Yanfei, WANG Haidou. Research Status of Molten Droplet Spreading and Solidification Behaviour in Plasma Spraying. Materials Reports, 2024, 38(6): 22080031-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080031  或          https://www.mater-rep.com/CN/Y2024/V38/I6/22080031
1 Wang H J. Practical technology of thermal spraying, National Defense Industry Press, China, 2006, pp. 213 (in Chinese).
王海军. 热喷涂实用技术, 国防工业出版社, 2006, pp.213.
2 Xu B S, Zhu S H. Theory and technology of surface engineering, National Defense Industry Press, China, 2010, pp.66 (in Chinese).
徐滨士, 朱绍华. 表面工程的理论与技术, 国防工业出版社, 2010, pp.66.
3 Bai Y, Zhao L, Wang Y, et al. Journal of Alloys and Compounds, 2015, 632, 794.
4 Fukumoto M, Nishioka E, Matsubara T. Surface & Coatings Technology, 1999, 120, 131.
5 Ghafouri-Azar R, Mostaghimi J, Chandra S, et al. Journal of Thermal Spray Technology, 2003, 12(1), 53.
6 Bobzin K, Wietheger W, Heinemann H, et al. Springer International Publishing, 2021, 91, 100.
7 Wang Y, Chong N J, Bai Y, et al. Coatings, 2020, 10(11), 1047.
8 Zhang Y. Research of jet characteristic and drop spreading solidification behavior in plasma spraying process. Ph. D. Thesis, Southwest Petro-leum University, China, 2015( in Chinese) .
张勇. 等离子喷涂射流特性及熔滴铺展凝固行为研究. 博士学位论文, 西南石油大学, 2015.
9 Cui C W. Numerical simulation of the plasma spray coating formation process. Master's Thesis, Fuzhou University, China, 2011 (in Chinese).
崔长文. 等离子喷涂涂层形成过程数值模拟. 硕士学位论文, 福州大学, 2011.
10 Chraska T, King A H. Thin Solid Films, 2001, 397(1), 30.
11 Shen M G, Li B Q, Bai Y. International Journal of Heat and Mass Transfer, 2020, 157, 119844.
12 Shen M G, Li B Q, Bai Y. International Journal of Heat and Mass Transfer, 2020, 150, 119267.
13 Shen M G, Li B Q, Yang Q Z. Materials Research Express, 2021, 8(7), 76503.
14 Zhang Y G, Matthews S. International Journal of Heat and Mass Transfer, 2017, 115, 488.
15 Bobzin K, Bagcivan N, Parkot D, et al. Surface & Coatings Technology, 2010, 204(8), 1211.
16 Wang Y Y, Han Y X, Lin C C, et al. Ceramics International, 2021, 47(13), 18956.
17 Alavi S, Passandideh-Fard M, Mostaghimi J. Journal of Thermal Spray Technology, 2012, 21(6), 1278.
18 Zhu Z, Kamnis S, Gu S. Acta Materialia, 2015, 90, 77.
19 Sampath S, Jiang X. Materials Science and Engineering A, 2001, 304, 306.
20 Kout A, Wiederkehr T, Müller H. Surface & Coatings Technology, 2009, 203(12), 1580.
21 Zhang Y G, Matthews S, Wu D T, et al. Surface & Coatings Technology, 2022, 431, 128006.
22 Chraska T, King A H. Thin Solid Films, 2001, 397(1), 40.
23 Bot L C, Vincent S, Meillot E, et al. Surface & Coatings Technology, 2015, 268, 272.
24 Yao S W, Liu T, Li C J, et al. Acta Materialia, 2017, 134, 66.
25 Zheng Z H, Luo J X, Li Q. Journal of Thermal Spray Technology, 2015, 24(5), 885.
26 Wang J, Luo X T, Li C J, et al. Surface & Coatings Technology, 2019, 371, 36.
27 Wang Y, Bai Y, Wu K, et al. Journal of Alloys and Compounds, 2019, 784, 834.
28 Wei P, Wei Z, Li S, et al. Applied Surface Science, 2014, 321, 538.
29 Mostaghimi J, Pasandideh-Fard M, Chandra S. Plasma Chemistry and Plasma Processing, 2002, 22(1), 59.
30 Goutier S, Vardelle M, Fauchais P. Surface & Coatings Technology, 2013, 235, 657.
31 Dhiman R, McDonald A G, Chandra S. Surface & Coatings Technology, 2007, 201(18), 7789.
32 Chen S Y, Ma G Z, Wang H D, et al. Journal of Alloys and Compounds, 2018, 768, 789.
33 Salhi Z, Klein D, Gougeon P, et al. Vacuum, 2005, 77(2), 145.
34 Liu Q, Wang Y, Bai Y, et al. Surface & Coatings Technology, 2020, 397, 126052.
35 Wang Y, Jia H, Bai Y, et al. Vacuum, 2021, 192, 110463.
36 Shukla R K, Kumar A, Kumar R, et al. Surface & Coatings Technology, 2019, 378, 124972.
37 Tran A T T, Hyland M M, Shinoda K, et al. Thin Solid Films, 2011, 519(8), 2445.
38 Sharp D H. Physica D: Nonlinear Phenomena, 1984, 12(1-3), 3.
39 Wang Y, Bai Y, Wu K, et al. Journal of Alloys and Compounds, 2019, 784, 834.
40 Yang K, Fukumoto M, Yasui T, et al. Journal of Thermal Spray Techno-logy, 2010, 19(6), 1195.
41 Qu M, Gouldstone A. Journal of Thermal Spray Technology, 2008, 17(4), 486.
42 Yang K, Ebisuno Y, Tanaka K, et al. Surface & Coatings Technology, 2011, 205(13-14), 3816.
43 Chong F L, Chen J L. Journal of Alloys and Compounds, 2021, 861, 158422.
44 Goutier S, Vardelle M, Fauchais P. Journal of Thermal Spray Technology, 2012, 21(3-4), 522.
45 Xing Y Z, Li X H, Wang Q, et al. Surface & Coatings Technology, 2015, 283, 234.
46 Brossard S, Munroe P R, Tran A T T, et al. Surface & Coatings Techno-logy, 2010, 204(9), 1599.
47 Yang K, Fukumoto M, Yasui T, et al. Surface & Coatings Technology, 2013, 214, 138.
48 McDonald A, Moreau C, Chandra S. Surface & Coatings Technology, 2007, 202(1), 23.
49 Zhang Y G, Matthews S, Munroe P, et al. Applied Surface Science, 2019, 494, 124.
50 Zhang Y G, Matthews S, Tran A T T, et al. Surface & Coatings Techno-logy, 2016, 307, 807.
51 Li C J, Luo X T, Dong X Y, et al. Journal of Thermal Spray Technology, 2022, 31(1-2), 5.
52 Liu M, Chen S Y, Ma G Z, et al. Journal of Mechanical Engineering, 2020, 56(10), 64(in Chinese).
刘明, 陈书赢, 马国政, 等. 机械工程学报, 2020, 56(10), 64.
53 Zhang S L, Li C X, Li C J, et al. Journal of Power Sources, 2013, 232, 123.
54 Xing Y Z, Jiang C P, Chen H, et al. Acta Mechanica Solida Sinica, 2011, 24(5), 461.
55 Yao S W, Li C J, Tian J J, et al. Acta Materialia, 2016, 119, 9.
56 Dong X Y, Luo X T, Zhang S L, et al. Journal of Thermal Spray Technology, 2020, 29(1-2), 173.
57 Rashid H, Dong X Y, Wang J, et al. JOM, 2020, 72(12), 4604.
58 Yang G J, Li C X, Hao S, et al. Surface and Coatings Technology, 2013, 235, 841.
59 Li C J, Yang G J, Li C X. Journal of Thermal Spray Technology, 2013, 22(2-3), 192.
60 Li C J, Li J L. Journal of Thermal Spray Technology, 2004, 13(2), 229.
61 Yao S W, Tian J J, Li C J, et al. Journal of Thermal Spray Technology, 2016, 25(8), 1617.
62 Yao S, Yang G J, Li C X, et al. Journal of Thermal Spray Technology, 2017, 27(1-2), 25.
63 Hao S, Li C J, Yang G J. Journal of Thermal Spray Technology, 2010, 20(1-2), 160.
64 Yang E J, Luo X T, Yang G J, et al. Surface and Coatings Technology, 2015, 274, 37.
65 Chen L, Yang G J. Journal of Thermal Spray Technology, 2018, 27(3), 255.
66 Matejicek T, Sampath S. Acta Materialia, 2001, 49(11), 1993.
67 Shinde S V. Journal of the European Ceramic Society, 2022, 42(3), 1077.
68 Ferguen N, Mebdoua-Lahmar Y, Lahmar H, et al. Surface & Coatings Technology, 2019, 371, 287.
69 Shinde S V, Gildersleeve V E J, Johnson C A, et al. Acta Materialia, 2020, 183, 196.
70 Wang L, Li Z D, Ding K Y, et al. Ceramics International, 2022, 48(6), 7864.
71 Shinde S V. Acta Materialia, 2021, 215, 117074.
72 Chen L, Yang G J. Journal of Advanced Ceramics, 2017, 7(1), 17.
73 Chen L, Yang G J. Journal of Thermal Spray Technology, 2017, 26(6), 1168.
74 Chen L, Yang G. Journal of Thermal Spray Technology, 2018, 27(3), 255.
75 Ito K, Kuriki H, Araki H, et al. Science and Technology of Advanced Materials, 2014, 15(3), 35007.
76 Chi W G, Sampath S, Wang H. Journal of the American Ceramic Society, 2008, 91(8), 2636.
77 Lu Z, Kim M S, Myoung S W, et al. Transactions of Nonferrous Metals Society of China, 2014, 24, s29.
78 Guo H B, Vaβen R, Stöver D. Surface & Coatings Technology, 2004, 186(3), 353.
79 Wang L, Zhong X H, Shao F, et al. Applied Surface Science, 2018, 431, 101.
[1] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[2] 黄奎龙, 余刚, 方修洋, 张昊楠. 踏面匹配与初始裂纹形态交互作用下车轮多轴疲劳裂纹扩展特性[J]. 材料导报, 2024, 38(4): 22060161-5.
[3] 王万祯. Q460C钢缺口板的疲劳裂纹萌生寿命计算模型和总疲劳寿命计算[J]. 材料导报, 2024, 38(4): 23010056-8.
[4] 马昕, 刘海韬, 姜如, 孙逊. He-Hutchinson模型在连续陶瓷纤维增韧陶瓷基复合材料研究中的应用[J]. 材料导报, 2024, 38(3): 22100252-7.
[5] 楚佳杰, 韩冰源, 李仁兴, 高祥涵, 丛孟启, 吴海东, 徐文文, 杜伟. 基于响应曲面法的等离子喷涂Ni60CuMo涂层质量优化[J]. 材料导报, 2024, 38(3): 22040338-6.
[6] 张若楠, 韦朋余, 王珂, 曾庆波, 王连, 宋培龙. 海水环境下船用高强钢腐蚀疲劳损伤行为研究[J]. 材料导报, 2024, 38(23): 23090176-6.
[7] 王慧鹏, 蔡冬威, 董丽虹, 林恩, 王海斗. 材料亚表面/表面缺陷锁相红外热成像检测研究现状与趋势[J]. 材料导报, 2024, 38(18): 23020112-8.
[8] 王清洲, 孙颖晖, 薛晓, 马士宾, 肖成志. 玻璃钢夹砂管涵夹砂层细观断裂数值模拟[J]. 材料导报, 2024, 38(17): 22100284-10.
[9] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[10] 李辉, 郭润兰, 黄华, 黄晖阳. 基于扩展有限元方法的自愈微胶囊和基体力学性能适配的研究[J]. 材料导报, 2024, 38(13): 22100029-8.
[11] 余宸, 田威, 王杰, 高晋峰. 砂型3D打印材料在岩体物理模型试验中的应用研究及展望[J]. 材料导报, 2024, 38(12): 22120133-9.
[12] 王哲昊, 吕绪明. 等离子喷涂技术在工程陶瓷涂层制备中的应用现状及展望[J]. 材料导报, 2024, 38(11): 23110033-10.
[13] 彭启清, 刘明, 黄艳斐, 马国政, 郭伟玲, 王海斗. 热喷涂陶瓷-树脂复合涂层的研究现状[J]. 材料导报, 2023, 37(9): 21100184-12.
[14] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[15] 温飞娟, 温奇飞, 龙樟, 蒲京辰, 邓荣. 基于超声红外热波技术的再制造零件裂纹检测研究现状[J]. 材料导报, 2023, 37(6): 21030195-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed