Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 22100029-8    https://doi.org/10.11896/cldb.22100029
  高分子与聚合物基复合材料 |
基于扩展有限元方法的自愈微胶囊和基体力学性能适配的研究
李辉, 郭润兰, 黄华*, 黄晖阳
兰州理工大学机电工程学院,兰州 730000
Study on the Adaptation of Self-healing Microcapsules to Matrix Mechanical Properties Based on Extended Finite Element Method
LI Hui, GUO Runlan, HUANG Hua*, HUANG Huiyang
School of Mechatronic Engineering, Lanzhou University of Technology, Lanzhou 730000, China
下载:  全 文 ( PDF ) ( 6337KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微胶囊自修复树脂矿物复合材料作为一种自愈合智能材料得到了广泛的应用。微胶囊及时开裂,释放愈合剂从而修复基体中产生的微裂纹,是确保其自愈性能的关键。本工作基于扩展有限元方法结合内聚力模型,分析在不同偏置裂纹下微胶囊和环氧树脂基体之间的力学性能配比以及界面性能对裂纹扩展路径和微胶囊可裂性的影响。研究结果表明:(1)裂纹的扩展路径主要取决于微胶囊与基体的断裂性能配比,而弹性性能配比起次要作用。(2)当界面具有足够的粘结强度时,相对于断裂韧性配比,微胶囊与基体的断裂强度配比是影响微胶囊开裂的主要因素。(3)裂纹的偏置距离越大,裂纹越容易发生偏转,微胶囊越不容易开裂。(4)界面缺陷的存在有利于界面裂纹的产生,不利于微胶囊的开裂。研究结果可为自修复材料在工程中的应用提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李辉
郭润兰
黄华
黄晖阳
关键词:  树脂矿物复合材料  自修复  偏置裂纹  扩展有限元  内聚力模型    
Abstract: Microcapsule self-healing resin mineral composites, a type of self-healing intelligent material, have found widespread use. The timely release of healing agents from microcapsules to repair microcracks generated in the matrix is crucial for ensuring self-healing performance. Based on the extended finite element method combined with the cohesive force model, the effects of the mechanical properties ratio between microcapsules and epoxy resin matrix and the interface properties on the crack growth path and microcapsules’ crackability under different bias cracks were analyzed in this work. Our findings reveal that: (i) crack propagation paths primarily depend on the fracture property ratio between the microcapsule and matrix, with elastic properties playing a less significant role;(ii) given sufficient adhesive strength at the interface, the fracture strength ratio of the microcapsule to the substrate is the main factor influencing microcapsule cracking relative to the fracture toughness ratio;(iii) a larger crack offset distance makes crack deflection easier and microcapsule cracking more difficult;(iv)the existence of interfacial defects is conducive to the formation of interfacial cracks, which is not conducive to the cracking of microcapsules. These findings offer a theoretical basis for applying self-healing materials in engineering contexts.
Key words:  resin mineral composites    self-healing    bias crack    extended finite element    cohesion model
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51965037)
通讯作者:  *黄华,兰州理工大学机电工程学院教授、博士研究生导师。2011年毕业于同济大学,获得工学博士。2015年在兰石集团中央研究院兼职通用技术中心副主任,2017年—2018年在美国佛罗里达大学进行访问合作研究。主持完成国家级项目1项,主持完成企业委托项目3项,主持在研国家级项目1项,省部级项目2项,企业委托项目3项。目前主要从事智能制造、复合材料应用及其加工工艺与装备等方面的研究工作,发表论文40余篇,被SCI/EI等收录30余篇。hh318872@126.com   
作者简介:  李辉,2021年7月毕业于兰州理工大学,获得工学学士学位。现为兰州理工大学机电工程学院硕士研究生,在郭润兰、黄华教授的指导下进行研究。目前主要研究领域为微胶囊自修复树脂矿物复合材料。
引用本文:    
李辉, 郭润兰, 黄华, 黄晖阳. 基于扩展有限元方法的自愈微胶囊和基体力学性能适配的研究[J]. 材料导报, 2024, 38(13): 22100029-8.
LI Hui, GUO Runlan, HUANG Hua, HUANG Huiyang. Study on the Adaptation of Self-healing Microcapsules to Matrix Mechanical Properties Based on Extended Finite Element Method. Materials Reports, 2024, 38(13): 22100029-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100029  或          http://www.mater-rep.com/CN/Y2024/V38/I13/22100029
1 Ma Y, Li F, Wang L , et al. The International Journal of Advanced Ma-nufacturing Technology, 2021, 113, 1143.
2 Guo R L, Fan Y Q, Wang G S, et al. Journal of Composite Materials, 2022, 39(2), 834 (in Chinese).
郭润兰, 范雅琼, 王广书, 等. 复合材料学报, 2022, 39(2), 834.
3 Wang X, Liang J, Ren J, et al. Journal of Building Engineering, 2023, 65, 105773.
4 Han N X, Xing F A. Materials, 2016, 10(1), 2.
5 Mauludin L M, Oucif C, Rabczuk T. Frontiers of Structural and Civil Engineering, 2020, 14(3), 792.
6 Li W, Jiang Z, Yang Z. Materials, 2017, 10(6), 589.
7 Fan Y Q. Study on damage performance of resin mineral composite material for machine tools and their self-healing microcapsule cracking performance. Master's Thesis, Lanzhou University of Technology, China, 2022 (in Chinese).
范雅琼. 机床用树脂矿物复合材料损伤性能及其自愈合微胶囊可裂性研究. 硕士学位论文, 兰州理工大学, 2022.
8 Wang H, Wang J, Chen J. Engineering Fracture Mechanics, 2014, 132, 104.
9 Zhu Y F, Zhao X Z, Si C D, et al. Materials Reports, 2022, 36(10), 44 (in Chinese).
朱月风, 赵向臻, 司春棣, 等. 材料导报, 2022, 36(10), 44.
10 Mauludin L M, Oucif C. Frontiers of Structural and Civil Engineering, 2018, 13(2013), 1.
11 Zhao Z. Study on fracture behavior of microcapsule in self-healing composite material. Master's Thesis. Tianjin University, China, 2014 (in Chinese).
赵钊. 自修复复合材料中微胶囊破裂行为研究. 硕士学位论文, 天津大学, 2014.
12 Chen C, Ji H, Wang H. Journal of Nanoscience and Nanotechnology, 2013, 13(10), 6679.
13 Mrma A, Dmi A , Smsa B , et al. Composites Communications, 2022, 32, 101150.
14 Wang W, Sadeghipou K, Baran G. Composites Part A Applied Science & Manufacturing, 2008, 39(6), 956.
15 Alfaro M V C, Suiker A S J, Verhoosel C V, et al. European Journal of Mechanics-A/Solids, 2010, 29(2), 119.
16 Bush M B. International Journal of Fracture, 1997, 88(3), 215.
17 Barenblatt G I. Journal of Applied Mathematics and Mechanics, 1959, 23(3), 622.
18 Dugdale D S. Journal of the Mechanics and Physics of Solids, 1960, 8(2), 100.
19 Lin D. Journal of Mechanical Engineering, 2017, 53(22), 176.
20 Wang X Q. Meso-finite element analysis of the tensile properties of composites based on cohesive mode. Ph. D. Thesis, Harbin Engineering University, China, 2012(in Chinese).
王晓强. 基于内聚力模型的复合材料拉伸性能细观有限元分析. 博士学位论文, 哈尔滨工程大学, 2012.
21 Mauludin L M, Zhuang X, Rabczuk T. Composite Structures, 2018, 196, 63.
22 Belytschko T, Black T. International Journal for Numerical Methods in Engineering, 1999, 45(5), 601.
23 Melenk J, Babuska I. Computer Methods in Applied Mechanics and Engineering, 1996, 39(1-4), 289.
24 Wang Z , Song Z , Zhang J , et al. Materials & Design, 2012, 37, 582.
25 Sun P P. Research on strength and pore structure of microcapsule based self-healing cementitious composites. Master's Thesis, Shenzhen University, China, 2016 (in Chinese).
孙培培. 微胶囊自修复水泥基材料的强度与孔结构研究. 硕士学位论文, 深圳大学, 2016.
26 Rule J D, Sottos N R, White S R. Polymer, 2007, 48(12), 3520.
[1] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[2] 赵清平, 亢淑梅, 邹方正, 朱忠博, 李鹏宇. 甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究[J]. 材料导报, 2024, 38(7): 22080166-6.
[3] 侯福星, 白一鸣, 沈頔, 王剑云. 微生物自修复混凝土载体材料研究进展[J]. 材料导报, 2024, 38(13): 23040048-15.
[4] 张立卿, 余家乐, 王云洋, 韩宝国, 陈梦成, 许开成. 渗透结晶水泥基复合材料研究综述[J]. 材料导报, 2024, 38(13): 22100014-16.
[5] 刘亚豪, 王源升, 杨雪, 黄威, 李科, 王轩. 自修复聚氨酯材料的研究进展[J]. 材料导报, 2024, 38(1): 22050280-10.
[6] 沈士泰, 陈雨晨, 卫国英, 朱本峰. CeO2/铝合金自修复阳极氧化复合膜的电化学制备及表面性能[J]. 材料导报, 2023, 37(S1): 23030301-5.
[7] 刘晓英, 阮文琳, 张育新, 饶劲松, 尹长青, 张贤明, 柳云骐. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(9): 21060113-9.
[8] 卫元坤, 张优, 张政, 王菊萍, 陈飞. 基于缓蚀剂微/纳米容器的智能自修复涂层研究进展[J]. 材料导报, 2023, 37(8): 21050145-10.
[9] 李双捷, 马昆林, 龙广成, 谢友均, 曾晓辉. 持续荷载作用下砂浆裂缝的自修复性能及其评价指标[J]. 材料导报, 2023, 37(5): 21070056-9.
[10] 曾舜柯, 翟彦博, 彭和, 魏子伟, 张毅, 胡小骞. 8-HQ插层铝合金MAO-LDHs复合膜的自修复行为研究[J]. 材料导报, 2023, 37(20): 22040022-6.
[11] 常洪雷, 李晨聪, 王晓龙, 王剑宏, 王云飞, 曲明月, 刘健. 复合矿物掺合料对砂浆自修复性能的影响[J]. 材料导报, 2023, 37(2): 21070177-7.
[12] 叶姣凤, 王飞, 张钧翔, 左洋, 冯利邦, 罗晓晓. 热可逆聚氨酯改性自修复环氧树脂的力学性能和自修复行为[J]. 材料导报, 2023, 37(14): 22010044-6.
[13] 张龙飞, 谢浩, 冯吉利, 陈燕伟. 基于真实骨料的细观混凝土建模及数值模拟[J]. 材料导报, 2023, 37(10): 21080155-8.
[14] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[15] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed