Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21080155-8    https://doi.org/10.11896/cldb.21080155
  无机非金属及其复合材料 |
基于真实骨料的细观混凝土建模及数值模拟
张龙飞1, 谢浩2,3, 冯吉利1,*, 陈燕伟1
1 中国矿业大学(北京) 深部岩土力学与地下工程国家重点实验室,北京 100083
2 济南轨道交通集团有限公司,济南 250014
3 山东大学齐鲁交通学院,济南 250002
Meso-concrete Modeling and Numerical Simulation Based on Actual Aggregates
ZHANG Longfei1, XIE Hao2,3, FENG Jili1, *, CHEN Yanwei1
1 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
2 Jinan Rail Transit Group Co., Ltd., Jinan 250014, China
3 School of Qilu Transportation, Shandong University, Jinan 250002, China
下载:  全 文 ( PDF ) ( 55275KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 基于激光扫描技术获取真实骨料三维形状,进而构建骨料库,基于“点阵”思想提出了一种新的随机骨料投放算法,借助MATLAB编制了构建三维混凝土细观几何模型的骨料投放程序,所构建的细观模型能够反映混凝土内骨料真实形态、空间分布和级配等细观特征,对三维几何模型进行剖切,即可获得二维平面几何模型,对骨料体积分数为40%的卵石混凝土和骨料体积分数为30%、40%、50%的砾石混凝土典型切面内骨料的粗糙度、圆度和长细比分布特征进行统计分析。利用Python编写接口程序将上述二维切面几何信息导入到ABAQUS中进行网格划分,即可获得混凝土二维细观有限元模型,结合室内实验,基于内聚力模型的连续-非连续数值计算方法研究了不同骨料类型和骨料含量对混凝土单轴压缩破坏的影响规律。此外,该方法还可作为土石混合料、砾岩等具有随机分布特征的复合材料建模和力学性能研究的有效工具。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张龙飞
谢浩
冯吉利
陈燕伟
关键词:  激光扫描  骨料  混凝土细观模型  骨料投放算法  内聚力模型    
Abstract: The geometry information of actual aggregates can be obtained by laser scanner to build an aggregate library. Then based on the idea of ‘dot matrix' a new random aggregate placement algorithm is proposed, so that a 3D mesoscopic concrete model can be generated, which can truly reflect the shape, distribution and gradation of aggregates in concrete. Simplified 2D plane geometry model was conveniently obtained by cutting the 3D geometry model. The sections of pebble concrete with aggregate content of 40% and gravel concrete with aggregate content of 30%, 40% and 50% were made, and the roughness, roundness and elongation ratio of the aggregates in the sections were statistically analyzed. A script was written using Python to import 2D plane geometry information into ABAQUS for meshing. And a 2D finite element model of meso-concrete can be obtained. Combined with the laboratory experiments, the influence of aggregate type and aggregate content on the failure mechanism of concrete was studied by the finite element method with the cohesive zone model, under uniaxial compressions. Moreover, this method is also effective to study the mesoscale model of materials with random distribution characteristics such as soil-rock mixtures and conglomerates.
Key words:  laser scanning    aggregate    mesoscale concrete model    aggregate placement algorithm    cohesive zone model
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  TU528  
基金资助: 国家重点研发计划(2016YFC0600901);国家自然科学基金(41172116;U1261212);深部岩土力学与地下工程国家重点实验室(北京)创新基金(SKLGDUEK202220)
通讯作者:  *冯吉利,中国矿业大学(北京)深部岩土力学与地下工程国家重点实验室教授、博士研究生导师。1996年毕业于大连理工大学,获博士学位,2002年1月至2004年1月在瑞典马尔默大学学习进修。研究领域涉及材料变形局部化和多物理场耦合孔隙介质模型理论、氢致金属劣化数值模型、地下工程和高边坡工程的稳定性评价、矿山巷道支护技术与应用等。发表高水平论文100余篇,获得两项国家自然科学基金和国家973项目等课题资助。fjl@cuntb.edu.cn   
作者简介:  张龙飞,2017年6月毕业于河南理工大学,获得工学学士学位。现为中国矿业大学(北京)深部岩土力学与地下工程国家重点实验室博士研究生,在冯吉利教授的指导下主要从事混凝土细观模型、有限元分析和工程力学等的相关研究。
引用本文:    
张龙飞, 谢浩, 冯吉利, 陈燕伟. 基于真实骨料的细观混凝土建模及数值模拟[J]. 材料导报, 2023, 37(10): 21080155-8.
ZHANG Longfei, XIE Hao, FENG Jili, CHEN Yanwei. Meso-concrete Modeling and Numerical Simulation Based on Actual Aggregates. Materials Reports, 2023, 37(10): 21080155-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.21080155  或          https://www.mater-rep.com/CN/Y2023/V37/I10/21080155
1 Li J, Ren X D. Journal of Building Structures, 2014, 35(4), 20 (in Chinese).
李杰, 任晓丹. 建筑结构学报, 2014, 35(4), 20.
2 Liang S X, Li J. Engineering Mechanics, 2018, 35(2), 116 (in Chinese).
梁诗雪, 李杰. 工程力学, 2018, 35(2), 116.
3 Schlangen E, Van Mier J G M. International Journal of Damage Mecha-nics, 1992, 1(4), 435.
4 Zhou R X, Song Z H, Lu Y. Computers and Structures, 2017, 192, 96.
5 Huang Y J, Yang Z J, Ren W Y, et al. International Journal of Solids and Structures, 2015, 67, 340.
6 Ren W Y, Yang Z J, Sharma R, et al. Engineering Fracture Mechanics, 2015, 133, 24.
7 Xiong X Y, Xiao Q S. Journal of Hydraulic Engineering, 2019, 50(4), 448 (in Chinese).
熊学玉, 肖启晟. 水利学报, 2019, 50(4), 448.
8 Zhou Y L, Jin H, Wang B L. Construction and Building Materials, 2019, 228, 116785.
9 Yu B T, Liu T, Wang H, et al. Materials Reports, 2021, 35(14), 14058 (in Chinese).
于本田, 刘通, 王焕, 等. 材料导报, 2021, 35(14), 14058.
10 Du X Q, Zhang Z, Lou Z K, et al. Journal of Building Materials, 2020, 23(3), 603 (in Chinese).
杜向琴, 张臻, 娄宗科, 等. 建筑材料学报, 2020, 23(3), 603.
11 Zhu L, Dang F N, Ding W H, et al. China Civil Engineering Journal, 2020, 53(8), 97 (in Chinese).
朱琳, 党发宁, 丁卫华, 等. 土木工程学报, 2020, 53(8), 97.
12 Qin W, Du C B. Engineering Mechanics, 2012, 29(7), 186 (in Chinese).
秦武, 杜成斌. 工程力学, 2012, 29(7), 186.
13 Garboczi E J. Cement and Concrete Research, 2002, 32(10), 1621.
14 Trawinski W, Tejchman J, Bobinski J. Engineering Fracture Mechanics, 2018, 189, 27.
15 Li N, Zhao Y R, Materials Reports, 2021, 35(21), 21169 (in Chinese).
李娜, 赵燕茹. 材料导报, 2021, 35(21), 21169.
16 Li C H, Wang H L, Xu G X. Journal of Central South University (Science and Technology), 2011, 42(2), 463 (in Chinese).
李朝红, 王海龙, 徐光兴. 中南大学学报(自然科学版), 2011, 42(2), 463.
17 Yilmaz O, Molinari J F. Cement and Concrete Research, 2017, 97, 84.
18 Ma H F, Mi S Z, Chen H Q. Journal of China Institute of Water Resources and Hydropower Research, 2006(3), 196 (in Chinese).
马怀发, 芈书贞, 陈厚群. 中国水利水电科学研究院学报, 2006(3), 196.
19 Ma H F, Xu W X, Li Y C. Computers & Structures, 2016, 177, 103.
20 Ma H F, Song L Z, Xu W X. Computers and Structures, 2018, 209, 57.
21 Qin X G, Gu C S, Shao C F, et al. Construction and Building Materials, 2020, 253, 119184.
22 Yang Z J, Huang Y J, Yao F, et al. Engineering Mechanics, 2020, 37(8), 158 (in Chinese).
杨贞军, 黄宇劼, 尧锋, 等. 工程力学, 2020, 37(8), 158.
23 Xie H, Feng J L. Materials, 2019, 12(23), 3835.
24 Xie H. Study on failure process and mechanism of concrete with meso-structure based on cohesive zone model. Ph. D. Thesis, China University of Mining & Technology-Beijing, China, 2020 (in Chinese).
谢浩. 基于内聚力模型的细观混凝土破坏过程及机理研究. 博士学位论文, 中国矿业大学(北京), 2020.
25 Liu W L, Zhang X L, Wang S B. Journal of China Coal Society, 2020, 45(6), 1973 (in Chinese).
刘万里, 张学亮, 王世博. 煤炭学报, 2020, 45(6), 1973.
26 Sui S C, Zhu X S. Scientia Sinica(Technologica), 2020, 50(11), 1449 (in Chinese).
隋少春, 朱绪胜. 中国科学:技术科学, 2020, 50(11), 1449.
27 Xu W X, Chen H S. Computers and Structures, 2013, 114, 35.
28 Hong L, Gu X L. Influences of surface roughness and shape of coarse aggregates on mechanical properties of concrete, Tongji University Press, China, 2018 (in Chinese).
洪丽, 顾祥林. 骨料表面粗糙度及骨料形状对混凝土力学性能的影响, 同济大学出版社, 2018.
29 Dugdale D S. Journal of Mechanics and Physics of Solids, 1960, 8(2), 100.
30 Barenblatt G I. Advances in Applied Mechanics, 1962, 7(1), 55.
31 Han Y D, Zhang J, Wang Z B. Journal of Harbin Institute of Technology, 2013, 45(4), 84 (in Chinese).
韩宇栋, 张君, 王振波. 哈尔滨工业大学学报, 2013, 45(4), 84.
[1] 张红, 鄢文, 李楠, 张会, 陈哲, 李维泰. 一维陶瓷相增强的含碳耐火材料研究进展[J]. 材料导报, 2025, 39(9): 24070074-9.
[2] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[3] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[4] 夏晋, 郑宇航, 汪雨青. 基于多尺度模型的混凝土有效电阻率与几何代表尺寸研究[J]. 材料导报, 2025, 39(4): 24020001-7.
[5] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[6] 许开成, 王文鹏, 张立卿. 不同来源粗骨料混合再生混凝土抗压强度及其预测模型建立[J]. 材料导报, 2025, 39(12): 23110068-9.
[7] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[8] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[9] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[10] 张白, 彭晖, 杨致远. 海水干湿循环作用下地聚物基珊瑚骨料混凝土力学性能的研究[J]. 材料导报, 2024, 38(23): 23090081-9.
[11] 郑建岚, 王雅思, 陈僖, 张旺城. 含氯再生骨料混凝土中钢筋抗锈蚀性能试验研究[J]. 材料导报, 2024, 38(22): 23110219-7.
[12] 黄鹏宇, 周永祥, 冷发光, 贺阳, 孔亚宁, 杨文, 高育欣. 同级配下高碳铬铁渣骨料对混凝土性能的影响研究[J]. 材料导报, 2024, 38(22): 23090192-7.
[13] 于乐乐, 王爱国, 仲小凡, 刘开伟, 潘耀辉, 肖必华, 孙道胜. 煤矸石骨料混凝土力学和耐久性能研究进展[J]. 材料导报, 2024, 38(20): 23080244-9.
[14] 张雪芹, 马昆林, 龙广成, 曾晓辉, 唐卓, 谢友均, 刘宝举. 粗骨料形态特征表征参数及其与混凝土性能关系的研究进展[J]. 材料导报, 2024, 38(2): 22060263-12.
[15] 崔涛涛, 宁宝宽, 郜殿伟, 夏旭东. 混杂纤维高强轻骨料混凝土单轴受压试验研究[J]. 材料导报, 2024, 38(2): 22040204-6.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed