Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 24020001-7    https://doi.org/10.11896/cldb.24020001
  无机非金属及其复合材料 |
基于多尺度模型的混凝土有效电阻率与几何代表尺寸研究
夏晋*, 郑宇航, 汪雨青
浙江大学建筑工程学院,杭州 310058
Study on Effective Resistivity and Representative Volume Element of Concrete Based on Multi-scale Model
XIA Jin*, ZHENG Yuhang, WANG Yuqing
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
下载:  全 文 ( PDF ) ( 20398KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电阻率作为评估混凝土耐久性能的关键参数之一,与混凝土渗透性、内部钢筋腐蚀等指标有着密切联系。本工作通过构建砂浆、骨料和界面过渡区(ITZ)组成的三相复合材料,在混凝土试样中施加稳态电流;采用有限元分析的方法估算混凝土有效电阻率,对1 090个混凝土样本进行随机骨料建模,研究不同细观结构参数(ITZ厚度、导电能力、骨料形状和骨料含量)对混凝土有效电阻率的影响。对于特定的细观结构(Vagg=0.4,εitz=20 μm,k=5,圆形骨料),通过统计分析并结合试验结果,提出了混凝土有效电阻率几何代表尺寸(RVE)的大小,为探究二维三相混凝土的耐久性能奠定了基础。结果表明:混凝土的有效电阻率随着ITZ厚度和导电能力的增加而减小;随着骨料含量的增加而增大;圆形骨料的电流传输路径最短,使得其有效电阻率最小。当RVE尺寸达到骨料最大粒径的7倍时,得出的混凝土有效电阻率变异系数、相对误差均小于0.02。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏晋
郑宇航
汪雨青
关键词:  混凝土有效电阻率  均质化  几何代表尺寸(RVE)  骨料形状  界面过渡区(ITZ)    
Abstract: The electrical resistivity, a crucial parameter for assessing the durability characteristics of concrete, demonstrates close correlations with concrete permeability and internal steel corrosion.This study involves constructing a three-phase composite material comprising mortar, aggregate, and the interfacial transition zone (ITZ).By applying steady-state electric currents to concrete specimens and utilizing finite element analysis, we estimated the effective electrical resistivity of concrete.Random aggregate modeling was conducted for 1090 concrete samples to explore the impact of various microstructural parameters (such as ITZ thickness, conductivity, aggregate shape, and content) on the effective electrical resistivity of concrete.For a specific microstructural configuration (Vagg=0.4, εitz=20 μm, k=5, circular aggregates), the study proposed the size of the representative volume element (RVE) for concrete effective electrical resistivity based on statistical analysis and experimental results, laying the groundwork for investigating the durability performance of two-dimensional three-phase concrete.The results indicate that the effective electrical resistivity of concrete decreases with an increase in ITZ thickness and conductivity, increases with an increase in aggregate content, and circular aggregates exhibit the shortest current transmission path, resulting in the minimum effective electrical resistivity.When the RVE size reaches seven times the maximum aggregate particle size, the calculated coefficient of variation and relative error of concrete effective electrical resistivity are both less than 0.02.
Key words:  effective resistivity of concrete    homogenization    representative volume element (RVE)    aggregate shape    interfacial transition zone (ITZ)
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TB34  
基金资助: 国家自然科学基金面上项目(52278278)
通讯作者:  *夏晋,浙江大学建筑工程学院教授、博士研究生导师。自2004年致力海洋环境工程结构耐久性研究。xiajin@zju.edu.cn   
引用本文:    
夏晋, 郑宇航, 汪雨青. 基于多尺度模型的混凝土有效电阻率与几何代表尺寸研究[J]. 材料导报, 2025, 39(4): 24020001-7.
XIA Jin, ZHENG Yuhang, WANG Yuqing. Study on Effective Resistivity and Representative Volume Element of Concrete Based on Multi-scale Model. Materials Reports, 2025, 39(4): 24020001-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020001  或          https://www.mater-rep.com/CN/Y2025/V39/I4/24020001
1 Nenad G, Brian P, Jinyoung K, et al. Journal of Infrastructure Systems, 2016, 23(1), B4016005.
2 Sang Y, Yang Y Z, Zhao Q. Journal of Building Engineering, 2022, 46, 103642.
3 Ma H Y, Hou D, Liu Jun, et al. Construction and Building Materials, 2014, 71, 392.
4 Chidiac S E, Shafikhani M. Cement and Concrete Composites, 2020, 113, 103707.
5 Sanish K B, Neithalath N, Santhanam M. Construction and Building Materials, 2013, 49, 288.
6 Moradllo M K, Qiao C Y, Burkan lsgor O, et al. ACI Materials Journal, 2018, 115(6), 887.
7 Lutz M P, Zimmerman R W. International Journal of Engineering Science, 2016, 98, 51.
8 Quan W W, Ma X Y, Li X K, et al. International Journal of Heat and Mass Transfer, 2022, 185, 122358.
9 Li X X, Xu Y, Chen S H. Construction and Building Materials, 2016, 121, 100.
10 Li M Q, Qing L B, Chen H S, et al. Computer Methods in Applied Mechanics and Engineering, 2023, 404, 115830.
11 Tong L Y, Xiong Q X, Zhang M Z, et al. Construction and Building Materials, 2023, 367, 130096.
12 Zhou Y, Liu Q F. Materials Reports, 2023, 37(24), 22070243 (in Chinese).
周宇, 刘清风. 材料导报, 2023. 37(24), 22070243.
13 Li L Y, Xia J, Lin S. Construction and Building Materials, 2012, 26(1), 295.
14 Zhang X Q, Ma K L, Long G C, et al. Materials Reports, 2024, 38(2), 22060263 (in Chinese).
张雪芹, 马昆林, 龙广成, 等. 材料导报, 2024, 38(2), 22060263.
15 Wang X F, Yang Z J, Yates J, et al. Construction and Building Materials, 2015, 75, 35.
16 Pitaluga C G, Peixoto L E, Fernandes G R. Engineering Analysis with Boundary Elements, 2023, 147, 22.
17 Wang J, Li Q B, Qing L B, et al. Engineering Mechanics, 2012, 29(12), 1 (in Chinese).
王娟, 李庆斌, 卿龙邦, 等. 工程力学, 2012, 29(12), 1.
18 Jin Z J, Fang H, Liu Y. Ocean Engineering, 2023, 287, 1.
19 Carrara P, De Lorenzis L. Cement and Concrete Composites, 2017, 80, 224.
20 Carrara P, De Lorenzis L, Bentz D P. Modelling and Simulation in Materials Science and Engineering, 2016, 24(6), 065009.
21 Xiao J Z, Li W G, Corr D J, et al. Cement and Concrete Research, 2013, 52, 82.
22 Wang J, Wang H J, Xu Y Q, et al. Journal of Zhengzhou University (Engineering Science), 2018, 39(1), 12 (in Chinese).
王娟, 王会娟, 许耀群, 等. 郑州大学学报(工学版), 2018. 39(1), 12.
23 Ni H J, Xu W Y, Shi A C, et al. Engineering Mechanics, 2015, 32(3), 90 (in Chinese).
倪海江, 徐卫亚, 石安池, 等. 工程力学, 2015, 32(3), 90.
24 通用硅酸盐水泥:GB/175-2020, 2020.
25 ASTM C1876-19: Standard Test Method for Bulk Electrical Resistivity or Bulk Conductivity of Concrete. 2019.
26 El-Dieb A S, El-Ghareeb M A, Abdel-Rahman M H, et al. Journal of Building Engineering, 2018, 15, 61.
27 Lim S, Lee W, Choo H, et al. Construction and Building Materials, 2017, 157, 42.
28 Sebsadji S K, Chouicha K. International Journal of Solids and Structures, 2012, 49(21), 2941.
29 Zhou C S, Li K F, Ma F. Computers & Structures, 2014, 139, 33.
[1] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[2] 冯春花, 崔卜文, 郭晖, 张文艳, 朱建平. 水泥浆-碳化协同增强再生混凝土骨料研究[J]. 材料导报, 2023, 37(21): 22060098-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed