Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 24020024-8    https://doi.org/10.11896/cldb.24020024
  高分子与聚合物基复合材料 |
苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究
邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明*
中南林业科技大学材料科学与工程学院,长沙 410004
Preparation and Properties of SiO2 Mineralized Chinese Fir Composite Induced by Phenylalanine Derivatives
DENG Zebin, LIU Jing, LAI Shenghui, LIU Da, HUANG Jinzhuo, YUAN Guangming*
College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
下载:  全 文 ( PDF ) ( 17892KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于仿生物矿化原理,以苯丙氨酸衍生物作为模板剂和诱导剂,将其接枝到杉木细胞壁上,结合溶胶-凝胶法,诱导多羟基SiO2在杉木细胞壁上有序沉积,并调控其结晶形态,实现对杉木力学性能的协同增效作用。结果表明:苯丙氨酸衍生物诱导SiO2矿化杉木的方式分为化学结合(细胞壁)和物理沉积(细胞腔)两种方式,其中,化学结合是通过苯丙氨酸衍生物与杉木形成的富含矿化位点的有机膜,诱导SiO2的成核结晶与有序沉积,生成了棒状SiO2,这种形态的SiO2有效地支撑了木材结构,分散了外力;矿化后木材的顺纹抗压强度、抗弯强度、弹性模量、抗压强重比和抗弯强重比分别为49.76 MPa、65.14 MPa、8 010.83 MPa、1 777.14 N·m/kg、2 326.43 N·m/kg,较空白组杉木分别提升了54.29%、27.20%、20.16%、32.26%和9.03%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓泽斌
刘静
赖升晖
刘达
黄金灼
袁光明
关键词:  仿生矿化  苯丙氨酸  木材  物理力学性能  强重比    
Abstract: Based on the principle of biomineralization, the phenylalanine derivatives serve as a template and inducer and graft it onto Chinese fir cell wall, combined with sol-gel method, inducing the ordered deposition and regulating crystalline morphology of polyhydroxy-SiO2, thereby achieving synergetic effect of enhancing the wood mechanical performance. In result, the way of inducing SiO2 mineralization of Chinese fir by phenylalanine derivatives can be divided into chemical combination (cell wall) and physical deposition (cell lumen), among them, chemical combination is that the organic film of rich in mineralization site formed through the combination of phenylalanine derivatives and Chinese fir, which can induce the nucleation, crystallization, and ordered deposition, eventually generated rod-shaped SiO2. Rod-shaped SiO2 supports effectively wood structure and diffuse the external force.The longitudinal compressive strength, bending strength, elastic modulus, compressive weight ratio and bending strength to weight ratio are 49.76 MPa, 65.14 MPa, 8 010.83 MPa, 1 777.14 N·m/kg, and 2 326.43 N·m/kg, respectively. Compared with the blank group, the values of fir increased by 54.29%, 27.20%, 20.16%, 32.26% and 9.03%, respectively.
Key words:  biomimetic mineralization    phenylalanine    wood    physical and mechanical properties    strength-weight ratio
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  Q811  
  S781.7  
基金资助: 国家自然科学基金(32171708;31770606);国家重点研究与发展计划(2019YFE0114600)
通讯作者:  *袁光明,中南林业科技大学材料科学与工程学院教授、博士研究生导师。2008年于中南林业科技大学材料科学与工程学院获木材科学与技术学科工学博士学位,主要从事木材功能性改良、木竹基复合材料、木竹纤维-无机纳米复合材料研究。ygm@csuft.edu.cn   
作者简介:  邓泽斌,中南林业科技大学材料科学与工程学院研究生,在袁光明教授的指导下进行研究。目前主要从事木材功能性改良及木材仿生矿化机理研究。
引用本文:    
邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
DENG Zebin, LIU Jing, LAI Shenghui, LIU Da, HUANG Jinzhuo, YUAN Guangming. Preparation and Properties of SiO2 Mineralized Chinese Fir Composite Induced by Phenylalanine Derivatives. Materials Reports, 2025, 39(4): 24020024-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020024  或          https://www.mater-rep.com/CN/Y2025/V39/I4/24020024
1 Chen C, Kuang Y, Zhu S, et al. Nature Reviews Materials, 2020, 5(9), 642.
2 Dong X, Gan W, Shang Y, et al. Nature Sustainability, 2022, 5(7), 628.
3 Ding Y, Pang Z, Lan K, et al. Chemical Reviews, 2022, 123(5), 1843.
4 Moghaddam M S, Wålinder M E P, Claesson P M, et al. Holzforschung, 2016, 70(1), 69.
5 Gao J, Kim J S, Terziev N, et al. Holzforschung, 2016, 70(9), 877.
6 Song J, Chen C, Zhu S, et al. Nature, 2018, 554(7691), 224.
7 Merk V, Chanana M, Gaan S, et al. Holzforschung, 2016, 70(9), 867.
8 Sedighi Gilani M, Zhao S, Gaan S, et al. RSC Advances, 2016, 6(67), 62825.
9 Pries M, Mai C. European Journal of Wood and Wood Products, 2013, 71(2), 237.
10 Unger B, Bücker M, Reinsch S, et al. Wood Science and Technology, 2012, 47(1), 83.
11 Zhu H, Luo W, Ciesielski P N, et al. Chemical Reviews, 2016, 116(16), 9305.
12 Prasad Shastri V. MRS Bulletin, 2015, 40(6), 473.
13 Li Q, Wang Y, Zhang G, et al. Chemical Society Reviews, 2023, 52(5), 1549.
14 Pan M, Mei C, Du J, et al. Composites Part A: Applied Science and Manufacturing, 2014, 66, 128.
15 Sumper M, Brunner E. Advanced Functional Materials, 2006, 16(1), 17.
16 Mao L B, Gao H L, Yao H B, et al. Science, 2016, 354(6308), 107.
17 Pondelak A, Škapin A S, Knez N, et al. Green Chemistry, 2021, 23(3), 1130.
18 Merk V, Chanana M, Keplinger T, et al. Green Chemistry, 2015, 17(3), 1423.
19 Guo H, Luković M, Mendoza M, et al. ACS Applied Materials & Interfaces, 2019, 11(5), 5427.
20 Li H, Wang C, Wang Z, et al. Polymer Composites, 2022, 43(7), 4371.
21 Steinmetz N F, Shah S N, Barclay J E, et al. Small, 2009, 5(7), 813.
22 Johnatan Diosaa J C P J, Frank Ramirez-Rodríguez B, Monica Mesaa. Journal of Materails Research and Technology, 2020, 9(4), 8092.
23 Kamalov M, Capel P D, Rentenberger C, et al. ChemNanoMat, 2018, 4(12), 1209.
24 Fan Q, Ou R, Hao X, et al. ACS Nano, 2022, 16(6), 9062.
25 Xie Y, Kocaefe D, Chen C, et al. Journal of Nanomaterials, 2016, 2016, 1.
26 Lan C H, Sun Y M. Materials Chemistry and Physics, 2017, 199, 88.
27 Koohestani B, Ganetri I, Yilmaz E. Composites Part B: Engineering, 2017, 111, 103.
28 Xu S, Wang Y, Qi W, et al. ChemistrySelect, 2018, 3(17), 4939.
29 Pascual M B, Llebrés M T, Craven-Bartle B, et al. Plant Biotechnology Journal, 2017, 16(5), 1094.
30 Haiß A, Jordan A, Westphal J, et al. Green Chemistry, 2016, 18(16), 4361.
31 Li H, Wang C, Yang T, et al. Journal of Sol-Gel Science and Technology, 2022, 107(1), 57.
32 Kleber M, Bourg I C, Coward E K, et al. Nature Reviews Earth & Environment, 2021, 2(6), 402.
33 Ciriminna R, Pagliaro M. Journal of Sol-Gel Science and Technology, 2021, 101(1), 29.
34 Zhu Y, Guo Y, Cao K, et al. Nature Synthesis, 2023, 2(9), 864.
35 Klein L C, Al-Marzoki K, Jitianu A, et al. Journal of the American Ceramic Society, 2020, 103(8), 4140.
[1] 党奔, 陈志俊. 木基光热转换功能材料的应用研究进展[J]. 材料导报, 2025, 39(1): 24100143-13.
[2] 崔政, 李京超, 李建章, 高强. 木材胶黏剂仿生改性研究进展[J]. 材料导报, 2024, 38(8): 22110060-7.
[3] 王旭洁, 雒翠梅, 母军, 漆楚生. 热处理对木材多尺度结构及力学性能影响的研究现状[J]. 材料导报, 2024, 38(18): 23020251-8.
[4] 温佳璐, 刘文静, 张明辉. 木材吸湿特性的研究方法[J]. 材料导报, 2024, 38(18): 23030197-9.
[5] 王祺, 冯鑫浩, 刘新有. 古旧木材加固保护研究进展[J]. 材料导报, 2024, 38(1): 22070091-19.
[6] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[7] 郭登康, 郭耐, 傅峰, 杨昇, 李改云, 储富祥. 有机物改性增强木材物理力学性能的研究进展[J]. 材料导报, 2023, 37(22): 22020187-11.
[8] 刘金明, 张一甫, 甘卫星, 莫海林. 糖基三聚氰胺甲醛树脂木材胶黏剂的研究进展[J]. 材料导报, 2023, 37(17): 21120170-7.
[9] 马彬, 衣兆林, 牛海华, 黄启钦. 高温下SiO2气凝胶改性地聚合物的物理力学性能研究[J]. 材料导报, 2023, 37(10): 21110251-6.
[10] 黄薇, 李红强, 官航, 冯海洋, 韦业, 古孜努尔·阿巴白克力, 赖学军, 曾幸荣. 天然木材的功能化及其应用进展[J]. 材料导报, 2022, 36(18): 20090093-7.
[11] 高玉磊, 徐康, 詹天翼, 江京辉, 蒋佳荔, 赵丽媛, 吕建雄. 热处理对木材吸湿吸水性的影响及其机理研究概述[J]. 材料导报, 2022, 36(15): 20100270-8.
[12] 邵亚丽, 王喜明. 木材形状记忆效应与机理的研究进展[J]. 材料导报, 2021, 35(7): 7190-7198.
[13] 孙振宇, 张源, 左迎峰, 吴义强, 王张恒, 吕建雄. 有机-无机复合改性速生木材研究现状与展望[J]. 材料导报, 2021, 35(5): 5181-5187.
[14] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[15] 李萍, 张源, 吴义强, 袁光明, 李贤军, 左迎峰. 基于原位浸渍法的酚醛树脂改性杉木木材研究[J]. 材料导报, 2021, 35(22): 22193-22199.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed