Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24020155-6    https://doi.org/10.11896/cldb.24020155
  无机非金属及其复合材料 |
固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响
钱如胜1,2, 叶志波1, 张云升2,3, 赵儒泽1, 孔德玉1, 杨杨1,*, 聂海波4
1 浙江工业大学土木工程学院,杭州 310023
2 东南大学材料科学与工程学院,南京 211189
3 兰州理工大学土木工程学院,兰州 730050
4 浙江天造环保科技有限公司,浙江 丽水 323000
Effect of Carbon Sequestration Reinforcement Recycled Coarse Aggregate on the Mechanical Strength of Concrete and Its Volume Stability
QIAN Rusheng1,2, YE Zhibo1, ZHANG Yunsheng2,3, ZHAO Ruze1, KONG Deyu1, YANG Yang1,*, NIE Haibo4
1 College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310023, China
2 Jiangsu Key Laboratory for Construction Materials, Southeast University, Nanjing 211189, China
3 College of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
4 Zhejiang Tianzao Environmental Protection Technology Co., Ltd., Lishui 323000, Zhejiang, China
下载:  全 文 ( PDF ) ( 11652KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用废弃混凝土制备再生骨料,并对骨料进行固碳强化,制备高性能再生骨料混凝土,有利于“固废”和“固碳”双重环保。本工作制备了天然骨料混凝土(NCA-Concrete)、再生骨料混凝土(RCA-Concrete)和固碳强化再生骨料混凝土(CRCA-Concrete),探究固碳强化再生粗骨料(CRCA)对其混凝土力学强度和体积稳定性的影响及机理。结果表明:固碳强化可减小混凝土中再生骨料的界面过渡区(ITZ)宽度,提高ITZ和砂浆显微硬度,降低CRCA孔隙率;固碳强化再生骨料能提升其混凝土(28 d)抗压强度、劈裂抗拉强度和抗折强度,与RCA-Concrete相比,提升幅度分别为13.52%、8.49%和7.37%;固碳强化再生骨料亦可提升其混凝土体积稳定性,CRCA-Concrete后期(12 d)干燥收缩低于RCA-Concrete,其各龄期自收缩均低于NCA-Concrete。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钱如胜
叶志波
张云升
赵儒泽
孔德玉
杨杨
聂海波
关键词:  再生粗骨料  固碳强化  微结构  力学性能  收缩    
Abstract: In preparing of high-performance recycled concrete, the usage of waste concrete to prepare recycled aggregate and the usage of carbon to prepare carbon sequestration reinforcement recycled coarse aggregate are conducive to the dual environmental protection of “solid waste” and “carbon fixation”. In this work, natural coarse-aggregate concrete (NCA-Concrete), recycled coarse aggregate concrete (RCA-Concrete) and carbon sequestration reinforcement recycled coarse-aggregate concrete (CRCA-Concrete) were prepared, and the influence of carbon-sequestration reinforcement recycled coarse-aggregate (CRCA) on the mechanical strength and volume stability of concrete was investigated. The results showed that carbon sequestration reinforcement reduced the width of the interfacial transition zone (ITZ), elevated the microhardness of ITZ and mortar, and decreased the porosity of CRCA. Comparing to recycled coarse aggregate, CRCA could increases the compressive strength, splitting tensile strength, and flexural strength of concrete (28 d) by 13.52%, 8.49%, and 7.37%, respectively. CRCA could enhance concrete volume stability also, the drying shrinkage of CRCA-Concrete was lower than RCA-Concrete after 12 d and the self-shrinkage of CRCA-Concrete was always lower than NCA-Concrete.
Key words:  recycled coarse-aggregate    carbon-sequestration reinforcement    microstructure    mechanical property    shrinkage
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TU528  
基金资助: 国家自然科学基金青年基金项目(52208292);浙江省自然科学青年基金项目(LQ23E080018);浙江省属高校基本科研业务费-青年英才专项(RF-A2023015)
通讯作者:  *杨杨,博士,浙江工业大学教授、博士研究生导师,长期从事高性能水泥基材料与结构、功能性土木工程材料、环境友好材料与结构的科学研究和教学工作。yangyang@zjut.edu.cn   
作者简介:  钱如胜,博士,浙江工业大学副教授、硕士研究生导师,专注于水泥基材料固废及其固碳、微结构演变及其介质传输、耐久性及其寿命预测等研究。
引用本文:    
钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
QIAN Rusheng, YE Zhibo, ZHANG Yunsheng, ZHAO Ruze, KONG Deyu, YANG Yang, NIE Haibo. Effect of Carbon Sequestration Reinforcement Recycled Coarse Aggregate on the Mechanical Strength of Concrete and Its Volume Stability. Materials Reports, 2025, 39(9): 24020155-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020155  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24020155
1 Lyu H X, Hao L X, Zhang S P, et al. Resources, Conservation and Recycling, 2023, 199, 107211.
2 Bao J, Li S G, Zhang P, et al. Acta Materiae Compositae Sinica, 2020, 37(10), 2602(in Chinese).
鲍玖文, 李树国, 张鹏, 等. 复合材料学报, 2020, 37(10), 2602.
3 Shang X Y, Yang J W, Li J S. Acta Materiae Compositae Sinica, 2020, 37(7), 1774(in Chinese).
商效瑀, 杨经纬, 李江山. 复合材料学报, 2020, 37(7), 1774.
4 Zhang J K, Shi C J, Li Y K, et al. Journal of Materials in Civil Engineering, 2015, 27(11), 04015029.
5 Zhan B J, Poon C S, Liu Q, et al. Construction and Building Materials, 2014, 67, 3.
6 Shi C J, He P P, Tu Z J, et al. Journal of the Chinese Ceramic Society, 2014, 42(8), 996(in Chinese).
史才军, 何平平, 涂贞军, 等. 硅酸盐学报, 2014, 42(8), 996.
7 Zhang C S, Li Y J, Ding Y H, et al. Journal of Building Materials, 2022, 25(11), 1143(in Chinese).
张春生, 李雅婧, 丁亚红, 等. 建筑材料学报, 2022, 25(11), 1143.
8 Chen Z, Yu J M, Nong Y W, et al. Composite Structures, 2023, 322, 117439.
9 Wang D C, Xiao J Z, Xia B, et al. Journal of Tongji University (Natural Science), 2022, 50(11), 1610(in Chinese).
王佃超, 肖建庄, 夏冰, 等. 同济大学学报(自然科学版), 2022, 50(11), 1610.
10 Kou S C, Zhan B J, Poon C S. Cement and Concrete Composites, 2014, 45, 22.
11 Gao Y Q, Pan B H, Liang C F, et al. Journal of Civil and Environmental Engineering, 2021, 43(6), 95(in Chinese).
高越青, 潘碧豪, 梁超锋, 等. 土木与环境工程学报, 2021, 43(6), 95.
12 Wu J Y, Zhang Y S, Zhu P H, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2018, 33(3), 648.
13 Tam V W, Butera A, Le K N. Journal of Cleaner Production, 2016, 133, 672.
14 Li L, Ziyabek N, Jiang Y, et al. Case Studies in Construction Materials, 2023, 19, e02640.
15 Qian R S, Wan-Wendner L, Yang C Q, et al. Journal of Building Engineering, 2024, 90, 109453 (in Press).
16 China Academy of Building Research. Standard for test methods of conctete physical and mechnical properties, GB/T 50081-2019, China Building Materials Press, China, 2020 (in Chinese).
中国建筑科学研究院. 混凝土物理力学性能试验方法标准, GB/T 50081-2019, 中国建筑工业出版社, 2020.
17 Yang Y, Jiang C H, Xu S F. Journal of Building Materials, 2008(1), 94(in Chinese).
杨杨, 江晨晖, 许四法. 建筑材料学报, 2008(1), 94.
18 Jalilifar H, Sajedi F. Construction and Building Materials, 2021, 267, 121041.
19 Xiao J, Li W, Corr D J, et al. Cement and Concrete Research, 2013, 52, 82.
20 Wu K Y, Luo S R, Zheng J L, et al. Cement and Concrete Composites, 2022, 127, 104402.
21 Li Y, Zhang S, Wang R J, et al. Construction and Building Materials, 2019, 201, 408.
22 Wu Z W. Journal of the Chinese Ceramic Society, 1979(3), 262(in Chinese).
吴中伟. 硅酸盐学报, 1979(3), 262.
23 Wu Y W, Liu C, Liu H W, et al. Journal of Building Engineering, 2022, 53, 104584.
24 Cui Z L, Lu S S, Wang Z S. Journal of Building Materials, 2012, 15(2), 264(in Chinese).
崔正龙, 路沙沙, 汪振双. 建筑材料学报, 2012, 15(2), 264.
25 Behera M, Bhattacharyya S K, Minocha A K, et al. Construction and Building Materials, 2014, 68, 501.
26 Zhou S B, Shen A Q, Liang X Y, et al. Journal of Highway and Transportation Research and Development (English Edition), 2014, 8(1), 7.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[4] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[5] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[6] 陈洋, 李增祎, 吴智, 邓承继, 娄晓明, 李勇庆, 谭嘉琳, 丁军, 余超. 催化剂添加量和温度对催化氮化制备低碳MgO-C耐火材料显微结构演变的影响[J]. 材料导报, 2025, 39(8): 24030031-5.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed