REVIEW PAPER |
|
|
|
|
|
Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting |
ZHANG Wenpei1,2,3, LI Huanhuan1,2,3, HU Zhili2,3, QIN Xunpeng2,3
|
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070; 2 Hubei Province Key Laboratory of Modern Automotive Technology, Wuhan 430070; 3 Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan 430070 |
|
|
Abstract The progress of modeling the plastic rheological behavior of aluminum alloy which can be used for automobile lightweighting is reviewed. With the development of forming technology and equipment, the forming methods of aluminum alloy are not confined to traditional cold forming any more. The technology of hot forming and high-velocity forming continuously appears and the requirement for the accuracy of constitutive model is improving. In consequence, the constitutive relationship of aluminum alloy at elevated temperature becomes a research focus and microstructure evolution is incorporated into constitutive model in order to improve its accuracy, including the dislocation movement and damage evolution. These models are proved to be able to describe the plastic rheological behavior of materials well.
|
Published: 10 July 2017
Online: 2018-05-04
|
|
|
|
1 Peng Xiaodong, Li Yulan, Liu Jiang. The applications of light alloys to automotive industry[J]. Mater Mechan Eng,1999,23(2):1(in Chinese). 彭晓东, 李玉兰, 刘江. 轻合金在汽车上的应用[J]. 机械工程材料,1999,23(2):1. 2 Lin J, Dean T A. Modelling of microstructure evolution in hot for-kming using unified constitutive equations[J]. J Mater Process Tech-nol,2005,167(2-3):354. 3 Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the Seventh International Symposium on Ballistics. Hague:IBC,1983:541. 4 Zhang Zhengli. Construction of dynamic mechanical constitutive model of 2024 aluminum[J]. J Shenyang Aerospace University,2014,31(2):47(in Chinese). 张正礼. 2024铝合金动态力学本构模型构建[J]. 沈阳航空航天大学学报,2014,31(2):47. 5 Tan J Q, Zhan M, Liu S, et al. A modified Johnson-Cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at high strain rates[J]. Mater Sci Eng A,2015,631(1):214. 6 Boldyrev I S, Shchurov I A, Nikonov A V. Numerical simulation of the aluminum 6061-T6 cutting and the effect of the constitutive material model and failure criteria on cutting forces′ prediction[J]. Procedia Eng,2016,150:866. 7 Kordkheili S A H, Ashrafian M M, Toozandehjani H. A rate-dependent constitutive equation for 5052 aluminum diaphragms[J]. Mater Des,2014,60(8):13. 8 Uemori T, Sumikawa S, Naka T, et al. Observations of cyclic deformation behaviors of aluminum sheet and constitutive modeling[J]. Procedia Eng,2014,81:933. 9 Fields D S, Backofen W A. Determination of strain hardening cha-racteristics by torsion testing[J]. Proc Soc Test Mater,1957,57:1259. 10 Ying Liang, Dai Minghua, et al. Thermal constitutive model and numerical simulation of hot forming for 6061-T6 aluminum alloy[J]. Chinese J Nonferrous Met,2015,25(7):1815(in Chinese). 盈亮, 戴明华,等. 6061-T6铝合金高温本构模型及温成形数值模拟[J]. 中国有色金属学报,2015,25(7):1815. 11 Liu W H, He Z T, Chen Y Q, et al. Dynamic mechanical properties and constitutive equations of 2519A aluminum alloy[J]. Trans Nonferrous Met Soc China,2014,24(7):2179. 12 Bobbili R, Paman A, Madhu V. High strain rate tensile behavior of Al-4.8Cu-1.2Mg alloy[J]. Mater Sci Eng A,2016,651:753. 13 Trimble D, O′Donnell G E. Flow stress prediction for hot deformation processing of 2024Al-T3 alloy[J]. Trans Nonferrous Met Soc China,2016,26(5):1232. 14 Pare V, Modi S, Jonnalagadda K N. Thermo-mechanical behavior and bulk texture studies on AA5052-H32 under dynamic compression[J]. Mater Sci Eng A,2016,668:38. 15 Sun Y, Ye W H, Hu L X. Constitutive modeling of high-temperature flow behavior of Al-0.62Mg-0.73Si aluminum alloy[J]. J Mater Eng Perform,2016,25(4):1621 16 Saravanan L, Senthilvelan T. Constitutive equation and microstructure evaluation of an extruded aluminum alloy[J]. J Mater Res Technol,2016,5(1):21. 17 Asgharzadeh A, Aval H J, Serajzadeh S. A study on flow behavior of AA5086 over a wide range of temperatures[J]. J Mater Eng Perform,2016,25(3):1076. 18 Ashtiani H R R, Shahsavari P. Strain-dependent constitutive equations to predict high temperature flow behavior of AA2030 aluminum alloy[J]. Mechan Mater,2016,100:209. 19 Khan A S, Liu H. Variable strain rate sensitivity in an aluminium alloy: Response and constitutive modeling[J]. Int J Plast,2012,36(9):1. 20 Trimble D, O′Donnell G E. Constitutive modelling for elevated temperature flow behaviour of AA7075[J]. Mater Des,2015,76:150. 21 Voyiadjis G Z, Almasri A H. A physically based constitutive model for fcc metals with applications to dynamic hardness[J]. Mechan Mater,2008,40(6):549. 22 Kabirian F, Khan A S, Pandey A. Negative to positive strain rate sensitivity in 5xxx series aluminum alloys: Experiment and constitutive modeling[J]. Int J Plast,2014,55:232. 23 Subroto T, Miroux A, Eskin D G, et al. Tensile mechanical properties, constitutive parameters and fracture characteristics of an as-cast AA7050 alloy in the near-solidus temperature regime[J]. Mater Sci Eng A,2017,679:28. 24 Xiao G, Yang Q W, Li L X. Modeling constitutive relationship of 6013 aluminum alloy during hot plane strain compression based on Kriging method[J]. Trans Nonferrous Met Soc China,2016,26(4):1096. 25 Estrin Y. Dislocation theory based constitutive modelling: Foundations and applications[J]. J Mater Process Technol,1998,80-81(98):33. 26 Lin J, Liu Y. A set of unified constitutive equations for modelling microstructure evolution in hot deformation[J]. J Mater Process Technol,2003,s143-144(1):281. 27 Fu Lei, Wang Baoyu, Lin Jianguo, et al. Constitutive model coupled with dislocation density for hot deformation of 6111 aluminum alloy[J]. J University of Science and Technology Beijing,2013,35(10):1333(in Chinese). 傅垒, 王宝雨, 林建国, 等. 耦合位错密度的6111铝合金热变形本构模型[J]. 北京科技大学学报,2013,35(10):1333. 28 Lin J, Yang J. GA-based multiple objective optimisation for determining viscoplastic constitutive equations for superplastic alloys[J]. Int J Plast,1999,15(11):1181. 29 Summers P T, Mouritz A P, Case S W, et al. Microstructure-based modeling of residual yield strength and strain hardening after fire exposure of aluminum alloy 5083-H116[J]. Mater Sci Eng A,2015,632:14. 30 Lin J, Cheong B H, Yao X. Universal multi-objective function for optimising superplastic-damage constitutive equations[J]. J Mater Process Technol,2002,125(2):199. 31 Ma Wenyu, Wang Baoyu, Zhou Jing, et al. Damage constitutive model for thermal deformation of AA6082 aluminum alloy[J]. Chinese J Nonferrous Met,2015,25(3):595(in Chinese). 马闻宇, 王宝雨, 周靖, 等. AA6082铝合金热变形损伤本构模型[J]. 中国有色金属学报,2015,25(3):595. 32 Ma W Y, Wang B Y, Bian J H, et al. A new damage constitutive model for thermal deformation of AA6111 sheet[J]. Metall Mater Trans A,2015,46(6):2748. 33 Hu P, Meng Q C, Hu W P, et al. A continuum damage mechanics approach coupled with an improved pit evolution model for the corrosion fatigue of aluminum alloy[J]. Corros Sci,2016,113:78. 34 Ganjiani M. A damage model incorporating dynamic plastic yield surface[J]. J Comput Appl Mech,2016,47(1):11. 35 Zhuang Weimin, Li Bingjiao, Xie Dongxuan. Thermoforming process optimization for B pillar of 7075 aluminum alloy based on damage factor[J]. Automotive Eng,2015,37(11):1353(in Chinese). 庄蔚敏, 李冰娇, 解东旋. 基于损伤因子的7075铝合金B柱热成形工艺优化[J]. 汽车工程,2015,37(11):1353. 36 Lin J. Selection of material models for predicting necking in superplastic forming[J]. Int J Plast,2003,19(4):469. 37 Yan S L, Yang H, Li H W, et al. A unified model for coupling constitutive behavior and micro-defects evolution of aluminum alloys under high-strain-rate deformation[J]. Int J Plast,2016,85:203. 38 Austin R A, Mcdowell D L. A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates[J]. Int J Plast,2011,27(1):1. 39 Pham M S, Iadicola M, Creuziger A, et al. Thermally-activated constitutive model including dislocation interactions, aging and recovery for strain path dependence of solid solution strengthened alloys: Application to AA5754-O[J]. Int J Plast,2015,75:226. |
|
|
|