Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 23100186-11    https://doi.org/10.11896/cldb.23100186
  无机非金属及其复合材料 |
废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究
李琼1,2,*, 安宝峰1,2, 苏睿1,2, 乔宏霞1,2,*, 王超群1,2
1 兰州理工大学土木工程学院,兰州 730050
2 甘肃省先进土木工程材料工程研究中心,兰州 730050
Research on the Physical Properties of Permeable Concrete Incorporating Waste Glass Powder and Microscopic Mechanism of Composite Binder System
LI Qiong1,2,*, AN Baofeng1,2, SU Rui1,2, QIAO Hongxia1,2,*, WANG Chaoqun1,2
1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 Gansu Advanced Civil Engineering Materials Engineering Research Center, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 50779KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为拓展废玻璃建材资源化利用的新途径,本工作就废玻璃粉(Waste glass powder,WGP)取代水泥制备透水混凝土(Pervious concrete,PC)的可行性及适用性开展研究,系统探究掺WGP透水混凝土各项性能指标,在保证透水性能的前提下,改善PC的力学性能。研究表明,WGP的掺入降低了PC的透水性能(连通孔隙率、透水系数),在相同掺量WGP条件下,粒径9.5~16 mm的粗骨料制备的PC透水性能优于粗骨料粒径为4.75~9.5 mm的PC;随着水胶比的增加,透水性能呈先上升后下降的趋势,总体呈下降趋势。PC中晚龄期(28 d、90 d)抗压强度、抗弯拉强度均随WGP掺量的增加呈先增后降的规律,最优掺量为20%;随水胶比的增加,抗压强度、抗弯拉强度均呈先增后降的趋势,最优水胶比为0.28。随着WGP掺量及水胶比的增加,峰值挠度递减。WGP-复合胶凝微观试验表明,WGP的掺入增加了C-S-H凝胶的相对含量,降低了CH含量,在中晚龄期其活性性能发挥更显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李琼
安宝峰
苏睿
乔宏霞
王超群
关键词:  透水混凝土  废玻璃粉  透水性能  力学性能  微观机理    
Abstract: To explore new avenues for the utilization of waste glass as a construction material, this study investigated the feasibility and applicability of using waste glass powder (WGP) as a substitute for cement in the preparation of permeable concrete (PC). The study systematically examined the performance indicators of WGP-incorporated permeable concrete, aiming to improve the mechanical properties of PC while ensuring its permeability. The research reveals that the incorporation of WGP reduces the permeability of PC, such as connected porosity and permeability coefficient. Under the same WGP content, PC prepared with coarse aggregate particle sizes ranging from 9.5 to 16 mm exhibits better permeabi-lity performance than that with particle sizes ranging from 4.75 to 9.5 mm. With the increase of water-to-binder ratio, the permeability perfor-mance initially improves and then decreases, showing an overall decreasing trend. The compressive strength and flexural strength of PC at the late-age stages (28 d, 90 d) follow a pattern of initial increase and subsequent decrease with increasing WGP content, reaching an optimal content of 20%. Similarly, with the increase of water-to-binder ratio, both compressive strength and flexural strength initially increase and then decrease, reaching an optimal water-to-binder ratio of 0.28. The peak deflection decreases with increasing WGP content and water-to-binder ratio. Microscopic tests on the WGP-composite binder system indicate that the addition of WGP increases the relative content of C-S-H gel and reduces the content of CH. This enhancement is more pronounced in the mid to late-age stages, indicating improved activity performance.
Key words:  permeable concrete    waste glass powder    permeability performance    mechanical property    microscopic mechanism
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TU528  
基金资助: 国家自然科学基金 (52468037);甘肃省自然科学基金(25JRRA091);甘肃省青年博士支持项目(2024QB-028);成县科技计划项目(2023-qk j002)
通讯作者:  李琼,博士,副教授,主要研究领域包括建筑固废资源化再利用,特殊地区环境下透水混凝土、植生混凝土的制备及西部地区混凝土耐久性能研究。liqiong@lut.edu.cn;
乔宏霞,工学博士,兰州理工大学九三学社支社副主委,教授,博士研究生导师。主要研究领域有西部盐渍土及盐湖地区混凝土及镁水泥钢筋混凝土耐久性、机制骨料及其混凝土、纤维及纳米混凝土、新型墙体材料等。qiaohongxia@lut.edu.cn   
引用本文:    
李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
LI Qiong, AN Baofeng, SU Rui, QIAO Hongxia, WANG Chaoqun. Research on the Physical Properties of Permeable Concrete Incorporating Waste Glass Powder and Microscopic Mechanism of Composite Binder System. Materials Reports, 2025, 39(8): 23100186-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100186  或          https://www.mater-rep.com/CN/Y2025/V39/I8/23100186
1 Li S, Jiao C J, Gan Y C. Engineering Science and Technology, 2019, 51(5), 199 (in Chinese).
李松, 焦楚杰, 甘元初. 工程科学与技术, 2019, 51(5), 199.
2 Paul S C, Savija B, Babafemi A J. Journal of Cleaner Production, 2018, 198, 891.
3 Saccani A, Bignozzi M C. Cement and Concrete Research, 2010, 40(4), 531.
4 Jani Y, Hogland W. Journal of Environmental Chemical Engineering, 2014, 2(3), 1767.
5 Idir R, Cyr M, Tagnit-Hamou A. Construction and Building Materials, 2010, 24(7), 1309.
6 Guo S, Dai Q, Sun X, et al. Journal of Cleaner Production, 2018, 172, 3621.
7 Khan M N N, Sarker P K. Materials and Structures, 2019, 52(5), 93.
8 Lu J, Duan Z, Poon C S. Cement and Concrete Composites, 2017, 82, 34.
9 Aliabdo A A, Abd Elmoaty M, Aboshama A Y. Construction and Building Materials, 2016, 124, 866.
10 Lu J X, Zhan B J, Duan Z H, et al. Materials and Design, 2017, 135, 102.
11 Shao Y, Lefort T, Moras S, et al. Cement and Concrete Research, 2000, 30(1), 91.
12 Rai B, Wille K. Journal of Cleaner Production, 2024, 451, 141907.
13 Peng L, Zhao Y, Ban J, et al. Cement and Concrete Composites, 2023, 137, 104909.
14 Zhao H, Li W, Gan Y, et al. Construction and Building Materials, 2023, 392, 131904.
15 Li Q, Qiao H, Li A, et al. Construction and Building Materials, 2022, 324, 126531.
16 Jang H, Jeon S, So H, et al. International Journal of Precision Engineering and Manufacturing, 2015, 16(12), 2591.
17 Du H, Tan K H. Cement and Concrete Composites, 2016, 75, 22.
18 Vaitkevicius V, Serelis E, Hilbig H. Construction and Building Materials, 2014, 68, 102.
19 Carsana M, Frassoni M, Bertolini L. Cement and Concrete Composites, 2014, 45, 39.
20 Villain G, Thiery M, Platret G. Cement and Concrete Research, 2007, 37(8), 1182.
21 Ahad M Z, Ashraf M, Kumar R, et al. Materials, 2018, 12(1), 60.
22 Wan X M, Che X P, Zhu Y G, et al. Materials Reports, 2023, 37(19), 114(in Chinese).
万小梅, 车雪萍, 朱亚光, 等. 材料导报, 2023, 37(19), 114.
23 Jain S, Pradhan B. Construction and Building Materials, 2019, 212(10), 304.
[1] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[2] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[3] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[4] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[5] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[6] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[7] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[8] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[9] 果春焕, 王磊, 邵帅齐, 王树邦, 李渐亮, 孙倩斐, 姜风春. 激光粉末床熔融金属点阵结构力学性能研究进展[J]. 材料导报, 2025, 39(6): 24040109-10.
[10] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[11] 何德健, 王振华, 刘保英, 房晓敏, 徐元清, 丁涛. 二乙基次磷酸铝和三聚氰胺衍生物协效阻燃PA6/GF复合材料[J]. 材料导报, 2025, 39(6): 24020106-8.
[12] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[13] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[14] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[15] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed