Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 24010149-6    https://doi.org/10.11896/cldb.24010149
  高分子与聚合物基复合材料 |
玻纤/聚丙烯直接注射成型及工艺参数影响研究
武明生, 侯震, 郑硕鵾, 金志明*, 张亚军*
北京化工大学机电工程学院,北京 100029
Research on Direct Injection Molding of Glass Fiber/Polypropylene and the Effect of Process Parameters
WU Mingsheng, HOU Zhen, ZHENG Shuokun, JIN Zhiming*, ZHANG Yajun*
School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
下载:  全 文 ( PDF ) ( 16344KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用纤维直接喂入注射成型(DFFIM)“一步法”工艺制备了玻璃纤维增强聚丙烯复合材料(GF/PP),研究了注射速度和塑化温度对DFFIM制备复合材料性能的影响规律,并与“两步法”技术进行实验对比探究DFFIM技术的优势。结果表明:当注射速度从5 mm/s增加到45 mm/s时,GF/PP复合材料的力学性能呈现先提高后降低的趋势,在注射速度为15 mm/s时拉伸、弯曲和无缺口冲击强度分别取得最大值95.0 MPa、133.9 MPa和61.7 kJ/m2;塑化温度从205 ℃增加到250 ℃时,复合材料的力学性能逐渐提高,当塑化温度继续增加到265 ℃时,复合材料的拉伸和冲击强度增强趋势大幅降低,而弯曲强度由250 ℃时的133.9 MPa降低到132.9 MPa。与“两步法”成型技术相比,DFFIM制备的GF/PP复合材料有明显的纤维长度优势,但玻纤含量超过30%以后,其力学性能低于长玻纤增强聚丙烯(L-GFPP)粒料通过“两步法”制备的复合材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武明生
侯震
郑硕鵾
金志明
张亚军
关键词:  纤维直接喂入注射成型  两步法  玻纤/聚丙烯复合材料  工艺参数  纤维长度  力学性能    
Abstract: GF/PP composites were prepared using the one-step process of direct fiber feeding injection molding (DFFIM), and the effect of injection speed and plasticization temperature on the properties of composites fabricated by DFFIM was studied, and the advantages of DFFIM technology were experimentally compared with the “two-step” technology. The results show that when the injection speed increases from 5 mm/s to 45 mm/s, the mechanical properties of GF/PP composites show a trend of first increasing and then decreasing, and the maximum tensile, bending and unnotched impact strength are 95.0 MPa, 133.9 MPa and 61.7 kJ/m2, respectively, at the injection speed is 15 mm/s. When the plasticizing temperature increases from 205 ℃ to 250 ℃, the mechanical properties of the composite gradually improve, and when the plasticizing temperature continues to increase to 265 ℃, the tensile and impact strength of the composite decrease significantly, while the bending strength decreases from 133.9 MPa at 250 ℃ to 132.9 MPa. Compared with the “two-step” technology, GF/PP composites fabricated by DFFIM have obvious fiber length advantages, but after the glass fiber content exceeds 30%, its mechanical properties are gradually lower than the composite fabricated by the “two-step” technology using L-GFPP pellets.
Key words:  DFFIM    two-step method    GF/PP composites    process parameter    fiber length    mechanical property
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TB332  
通讯作者:  *金志明,博士,北京化工大学副教授。主要研究领域:特种工程聚合物成型技术;聚合物注射成型及CAE;聚合物微注射成型技术。
张亚军,博士,北京化工大学机电工程学院教授、博士研究生导师。目前主要从事聚合物微纳制造、高分子材料成型与加工等方面的研究工作。zhyj@mail.buct.edu.cn;jinzm@mail.buct.edu.cn   
作者简介:  武明生,北京化工大学机电工程学院硕士研究生,在张亚军和教授的指导下进行研究。目前主要研究领域为聚合物成型与加工。
引用本文:    
武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
WU Mingsheng, HOU Zhen, ZHENG Shuokun, JIN Zhiming, ZHANG Yajun. Research on Direct Injection Molding of Glass Fiber/Polypropylene and the Effect of Process Parameters. Materials Reports, 2025, 39(6): 24010149-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010149  或          https://www.mater-rep.com/CN/Y2025/V39/I6/24010149
1 Lu P C, Bian W X, An J L, et al. Polymer Materials Science and Engineering, 2023, 39(6), 85 (in Chinese).
路鹏程, 卞文熙, 安俊龙, 等. 高分子材料科学与工程, 2023, 39(6), 85.
2 Jin X, Wang J, Han S. In:The 11th International Conference on Numerical Methods in Industrial Forming Processes. Shenyang, China, 2013, pp. 644.
3 Rezaei F, Yunus R, Ibrahim N A, et al. Polymer Plastics Technology and Engineering, 2008, 47(4), 351.
4 Li T, Yan B, Peng X Q, et al. Acta Materiae Compositae Sinica, 2015, 32(4), 1153 (in Chinese).
李涛, 严波, 彭雄奇, 等. 复合材料学报, 2015, 32(4), 1153.
5 Azenha J, Gomes M, Silva P, et al. Polymer Engineering and Science, 2018, 58, 560.
6 Jia M Y, Xue P, Yu J, et al. Engineering Plastics Application, 2010, 38(10), 83 (in Chinese).
贾明印, 薛平, 于建, 等. 工程塑料应用, 2010, 38(10), 83.
7 Qin W M, Du B, Zhu S W, et al. Materials Reports, 2023, 37(20), 241 (in Chinese).
秦唯铭, 杜冰, 朱绍伟, 等. 材料导报, 2023, 37(20), 241.
8 Liu C B, Ye S L, L W. Guangzhou Chemical Industry, 2020, 48(24), 4 (in Chinese).
刘创彬, 叶树林, 李伟. 广州化工, 2020, 48(24), 4.
9 Jin G, Yin X C, He G J, et al. Engineering Plastics Application, 2007(9), 38 (in Chinese).
晋刚, 殷小春, 何光建, 等. 工程塑料应用, 2007(9), 38.
10 Hisakura Y, Kitahara K, Sugihara M, et al. Key Engineering Materials, 2017, 728, 240.
11 Thodsaratpreeyakul W, Uawongsuwan P, Kataoka A, et al. Materials Today:Proceedings, 2018, 5, 9569.
12 Tian N, Zhang Y J, Jin Z M, et al. Modern Plastics Processing and Applications, 2020, 32(3), 56 (in Chinese).
田宁, 张亚军, 金志明, 等. 现代塑料加工应用, 2020, 32(3), 56.
13 Hou X Q, Chen X Y, Liu B C, et al. Polymer Engineering and Science, 2020, 60(1), 13.
14 Zhu H, Gu Y, Yang Z, et al. Polymer Composites, 2020, 41(4), 1531.
15 Qin J S, Peng X Q, Shen J, et al. Acta Materiae Compositae Sinica, 2013, 30(4), 53 (in Chinese).
秦计生, 彭雄奇, 申杰, 等. 复合材料学报, 2013, 30(4), 53.
16 Zhang J, Cao S. Materiali in Tehnologije, 2018, 52, 375.
17 Sarasook P, Uawongsuwan P, Memon A, et al. Key Engineering Materials, 2020, 856, 268.
18 Yan X F, Cao S. Composite Structures, 2018, 185, 362.
19 Yan X F, Yu L, Shen H. Journal of Polymer Engineering, 2018, 38, 461.
20 Nakao R, Inoya H, Hamada H. Energy Procedia, 2016, 89, 307.
21 Mathurosemontri S, Uawongsuwan P, Nagai S, et al. Energy Procedia, 2016, 89, 255.
[1] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[2] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[3] 果春焕, 王磊, 邵帅齐, 王树邦, 李渐亮, 孙倩斐, 姜风春. 激光粉末床熔融金属点阵结构力学性能研究进展[J]. 材料导报, 2025, 39(6): 24040109-10.
[4] 何德健, 王振华, 刘保英, 房晓敏, 徐元清, 丁涛. 二乙基次磷酸铝和三聚氰胺衍生物协效阻燃PA6/GF复合材料[J]. 材料导报, 2025, 39(6): 24020106-8.
[5] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[6] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[7] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[8] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[9] 邹家伟, 刘志超, 王发洲. 基于γ-C2S的蜂窝陶瓷常温制备与性能研究[J]. 材料导报, 2025, 39(4): 24010136-7.
[10] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[11] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[12] 丁来龙, 马明亮, 冯超, 黄微波, 王一凡, 林佳宇, 吴超. 聚脲材料的优化及抗爆抗侵彻性能研究进展[J]. 材料导报, 2025, 39(4): 24010082-9.
[13] 邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
[14] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[15] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed