Abstract: GF/PP composites were prepared using the one-step process of direct fiber feeding injection molding (DFFIM), and the effect of injection speed and plasticization temperature on the properties of composites fabricated by DFFIM was studied, and the advantages of DFFIM technology were experimentally compared with the “two-step” technology. The results show that when the injection speed increases from 5 mm/s to 45 mm/s, the mechanical properties of GF/PP composites show a trend of first increasing and then decreasing, and the maximum tensile, bending and unnotched impact strength are 95.0 MPa, 133.9 MPa and 61.7 kJ/m2, respectively, at the injection speed is 15 mm/s. When the plasticizing temperature increases from 205 ℃ to 250 ℃, the mechanical properties of the composite gradually improve, and when the plasticizing temperature continues to increase to 265 ℃, the tensile and impact strength of the composite decrease significantly, while the bending strength decreases from 133.9 MPa at 250 ℃ to 132.9 MPa. Compared with the “two-step” technology, GF/PP composites fabricated by DFFIM have obvious fiber length advantages, but after the glass fiber content exceeds 30%, its mechanical properties are gradually lower than the composite fabricated by the “two-step” technology using L-GFPP pellets.
武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
WU Mingsheng, HOU Zhen, ZHENG Shuokun, JIN Zhiming, ZHANG Yajun. Research on Direct Injection Molding of Glass Fiber/Polypropylene and the Effect of Process Parameters. Materials Reports, 2025, 39(6): 24010149-6.
1 Lu P C, Bian W X, An J L, et al. Polymer Materials Science and Engineering, 2023, 39(6), 85 (in Chinese). 路鹏程, 卞文熙, 安俊龙, 等. 高分子材料科学与工程, 2023, 39(6), 85. 2 Jin X, Wang J, Han S. In:The 11th International Conference on Numerical Methods in Industrial Forming Processes. Shenyang, China, 2013, pp. 644. 3 Rezaei F, Yunus R, Ibrahim N A, et al. Polymer Plastics Technology and Engineering, 2008, 47(4), 351. 4 Li T, Yan B, Peng X Q, et al. Acta Materiae Compositae Sinica, 2015, 32(4), 1153 (in Chinese). 李涛, 严波, 彭雄奇, 等. 复合材料学报, 2015, 32(4), 1153. 5 Azenha J, Gomes M, Silva P, et al. Polymer Engineering and Science, 2018, 58, 560. 6 Jia M Y, Xue P, Yu J, et al. Engineering Plastics Application, 2010, 38(10), 83 (in Chinese). 贾明印, 薛平, 于建, 等. 工程塑料应用, 2010, 38(10), 83. 7 Qin W M, Du B, Zhu S W, et al. Materials Reports, 2023, 37(20), 241 (in Chinese). 秦唯铭, 杜冰, 朱绍伟, 等. 材料导报, 2023, 37(20), 241. 8 Liu C B, Ye S L, L W. Guangzhou Chemical Industry, 2020, 48(24), 4 (in Chinese). 刘创彬, 叶树林, 李伟. 广州化工, 2020, 48(24), 4. 9 Jin G, Yin X C, He G J, et al. Engineering Plastics Application, 2007(9), 38 (in Chinese). 晋刚, 殷小春, 何光建, 等. 工程塑料应用, 2007(9), 38. 10 Hisakura Y, Kitahara K, Sugihara M, et al. Key Engineering Materials, 2017, 728, 240. 11 Thodsaratpreeyakul W, Uawongsuwan P, Kataoka A, et al. Materials Today:Proceedings, 2018, 5, 9569. 12 Tian N, Zhang Y J, Jin Z M, et al. Modern Plastics Processing and Applications, 2020, 32(3), 56 (in Chinese). 田宁, 张亚军, 金志明, 等. 现代塑料加工应用, 2020, 32(3), 56. 13 Hou X Q, Chen X Y, Liu B C, et al. Polymer Engineering and Science, 2020, 60(1), 13. 14 Zhu H, Gu Y, Yang Z, et al. Polymer Composites, 2020, 41(4), 1531. 15 Qin J S, Peng X Q, Shen J, et al. Acta Materiae Compositae Sinica, 2013, 30(4), 53 (in Chinese). 秦计生, 彭雄奇, 申杰, 等. 复合材料学报, 2013, 30(4), 53. 16 Zhang J, Cao S. Materiali in Tehnologije, 2018, 52, 375. 17 Sarasook P, Uawongsuwan P, Memon A, et al. Key Engineering Materials, 2020, 856, 268. 18 Yan X F, Cao S. Composite Structures, 2018, 185, 362. 19 Yan X F, Yu L, Shen H. Journal of Polymer Engineering, 2018, 38, 461. 20 Nakao R, Inoya H, Hamada H. Energy Procedia, 2016, 89, 307. 21 Mathurosemontri S, Uawongsuwan P, Nagai S, et al. Energy Procedia, 2016, 89, 255.