Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 24040109-10    https://doi.org/10.11896/cldb.24040109
  金属与金属基复合材料 |
激光粉末床熔融金属点阵结构力学性能研究进展
果春焕1,*, 王磊1, 邵帅齐1, 王树邦1, 李渐亮2, 孙倩斐1, 姜风春1,2
1 哈尔滨工程大学材料科学与化学工程学院,哈尔滨 150001
2 哈尔滨工程大学烟台研究院,山东 烟台 264000
Research Progress on Mechanical Properties of Metal Lattice Structure Fabricated by Laser Powder Bed Fusion
GUO Chunhuan1,*, WANG Lei1, SHAO Shuaiqi1, WANG Shubang1, LI Jianliang2, SUN Qianfei1, JIANG Fengchun1,2
1 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
2 Yantai Research Institute of Harbin Engineering University, Yantai 264000, Shandong, China
下载:  全 文 ( PDF ) ( 35211KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属点阵结构具有轻质、高比强度、高能量吸收等特点,在航空航天、生物医学等领域有着广阔的应用前景。快速发展的激光粉末床熔融技术可精确调控点阵结构参数,进而实现金属点阵结构的材料-结构-性能一体化设计与制造。因此,本文以杆状点阵结构、板状点阵结构及三周期极小曲面点阵结构等常见的点阵结构类型为顺序,综述了激光粉末床熔融金属点阵结构的力学响应机制、破坏失效行为、结构优化设计及激光粉末床熔融技术对金属点阵结构成型质量、力学性能的影响,进而从结构设计及优化、激光粉末床熔融技术、功能性设计等角度,提出激光粉末床熔融金属点阵结构可能面临的机遇和挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
果春焕
王磊
邵帅齐
王树邦
李渐亮
孙倩斐
姜风春
关键词:  激光粉末床熔融  点阵结构  力学性能  能量吸收    
Abstract: Because of its light weight, high specific strength and high energy absorption capacity, the metal lattice structure has great application prospects in aerospace, biomedicine and other fields. The laser powder bed fusion technology accurately controls the structural parameters of lattice structures, and then realizing the material-structure-performance integrated design and manufacturing of metal lattice structures. Therefore, in this paper, the mechanical response mechanism, failure behavior, structural optimization design and the influence of laser powder bed fusion on the forming quality and mechanical properties of metal lattice structures are reviewed in terms of common lattice structure types such as rod-shaped lattice structure, plate-shaped lattice structure and three-period minimal surface lattice structure. Furthermore,from the perspective of structural design and optimization, laser powder bed fusion technology, and functional design, the opportunities and challenges that metal lattice structures may face are proposed.
Key words:  laser powder bed fusion    lattice structure    mechanical property    energy absorption
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TB331  
基金资助: 中国核动力研究设计院项目(WDZC-05-FW-GKJT-231414)
通讯作者:  *果春焕,哈尔滨工程大学材料科学与化学工程学院教授、博士研究生导师。目前主要从事轻质高强金属基复合材料制备与性能、先进材料成型制造、先进材料动态力学行为等方面的研究。guochunhuan@hrbeu.edu.cn   
引用本文:    
果春焕, 王磊, 邵帅齐, 王树邦, 李渐亮, 孙倩斐, 姜风春. 激光粉末床熔融金属点阵结构力学性能研究进展[J]. 材料导报, 2025, 39(6): 24040109-10.
GUO Chunhuan, WANG Lei, SHAO Shuaiqi, WANG Shubang, LI Jianliang, SUN Qianfei, JIANG Fengchun. Research Progress on Mechanical Properties of Metal Lattice Structure Fabricated by Laser Powder Bed Fusion. Materials Reports, 2025, 39(6): 24040109-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040109  或          https://www.mater-rep.com/CN/Y2025/V39/I6/24040109
1 Tancogne-Dejean T, Spierings A B, Mohr D. Acta Materialia, 2016, 116, 14.
2 Andrew J J, Schneider J, Ubaid J, et al. International Journal of Impact Engineering, 2021, 149, 103768.
3 Qi D X, Yu H B, Liu M, et al. International Journal of Mechanical Sciences, 2019, 163, 105091.
4 Seharing A, Azman A H, Abdullah S. Advances in Mechanical Engineering, 2020, 12(6), 1687814020916951.
5 Alghamdi A, Downing D, McMillan M, et al. International Journal of Advanced Manufacturing Technology, 2019, 105(1-4), 1275.
6 Korkmaz M E, Gupta M K, Robak G, et al. Journal of Manufacturing Processes, 2022, 81, 1040.
7 Chen L Y, Liang S X, Liu Y J, et al. Materials Science & Engineering R, 2021, 146, 100648.
8 Chua J W, Li X W, Yu X, et al. Composite Structures, 2023, 304(2), 116434.
9 Yu T M, Jiang F C, Zhang R P, et al. Composite Structures, 2021, 261, 113554.
10 Liang D, He G L, Chen W, et al. International Journal of Thermal Sciences, 2022, 172(B), 107312.
11 You J H, Park K. Additive Manufacturing, 2021, 41, 101947.
12 Zhang C, Qiao H, Yang L, et al. Composite Structures, 2024, 327, 117642.
13 Jia Z, Liu F, Jiang X H, et al. Journal of Applied Physics, 2020, 127(15), 150901.
14 Sefene E M. Journal of Manufacturing Systems, 2022, 63, 250.
15 Al-Saedi D S J, Masood S H, Faizan-Ur-Rab M, et al. Materials & Design, 2018, 144, 32.
16 Elahinia M, Moghaddam N S, Andani M T, et al. Progress in Materials Science, 2016, 83, 630.
17 Yang L, Yan C Z, Han C J, et al. International Journal of Mechanical Sciences, 2018, 148, 149.
18 Taniguchi N, Fujibayashi S, Takemoto M, et al. Materials Science & Engineering C, 2016, 59, 690.
19 Yuan L, Ding S L, Wen C E. Bioactive Materials, 2019, 4, 56.
20 Alomar Z, Concli F. Materials & Design, 2021, 205, 109716.
21 Wang P, Yang F, Li P H, et al. Extreme Mechanics Letters, 2021, 47, 101358.
22 Kaur I, Singh P. International Journal of Heat and Mass Transfer, 2020, 158, 119784.
23 Maconachie T, Leary M, Lozanovski B, et al. Materials & Design, 2019, 183, 108137.
24 Yan C Z, Hao L, Hussein A, et al. Materials & Design, 2014, 55, 533.
25 Ye J J, Sun Z P, Ding Y Y, et al. Thin-Walled Structures, 2023, 190, 110988.
26 Zhang X, Li X Y. Mechanics in Engineering, 2021, 43(1), 164.
27 Lei H S, Li C L, Meng J X, et al. Materials & Design, 2019, 169, 107685.
28 Smith M, Guan Z, Cantwell W J. International Journal of Mechanical Sciences, 2013, 67, 28.
29 An Q, Dong F D, Luo T Z, et al. Journal of Alloys and Compounds, 2023, 937, 168354.
30 Liu Y G, Zhang J Q, Gu X J, et al. Scripta Materialia, 2020, 189, 95.
31 Liu Z L, Zhao R, Tao C L, et al. Aerospace, 2024, 11(1), 4.
32 Jin N, Wang F C, Wang Y W, et al. Materials & Design, 2019, 169, 107655.
33 Zhong H Z, Das R, Gu J F, et al. Materials Today, 2023, 68, 96.
34 Shi W T, Lin Y X, Li J, et al. Advanced Engineering Materials, 2023, 25(17), 202300451.
35 Xiao L J, Feng G Z, Li S, et al. International Journal of Impact Engineering, 2022, 169, 104333.
36 Xiao Z F, Yang Y Q, Xiao R, et al. Materials & Design, 2018, 143, 27.
37 Han C J, Yan C Z, Wen S F, et al. Rapid Prototyping Journal, 2018, 23(1), 16.
38 He M, Li Y, Yin J, et al. Materials & Design, 2022, 214, 110396.
39 Maconachie T, Leary M, Tran P, et al. International Journal of Advanced Manufacturing Technology, 2022, 118(11-12), 4085.
40 Bi J, Wu L K, Liu Z Q, et al. Journal of Materials Research and Technology, 2022, 19, 391.
41 Jin N, Yan Z Y, Wang Y W, et al. International Journal of Mechanical Sciences, 2021, 190, 106042.
42 Britt C, Montgomery C J, Brand M J, et al. Additive Manufacturing, 2021, 40, 101943.
43 Ekade P, Krishnan S. International Journal of Thermal Sciences, 2019, 137, 253.
44 Kaur I, Singh P. International Communications in Heat and Mass Transfer, 2021, 127, 105522.
45 Zhang Z, Zhang L, Song B, et al. Applied Materials Today, 2022, 26, 101268.
46 Li P Y, Ma Y E, Sun W B, et al. Thin-Walled Structures, 2022, 180, 109778.
47 Xiao L J, Xu X, Feng G Z, et al. International Journal of Mechanical Sciences, 2022, 219, 107093.
48 Parisien A, ElSayed M S A, Frei H. Materials Today Communications, 2022, 33, 104315.
49 Zhang L, Song B, Choi S K, et al. Composites Part B, 2022, 236, 109837.
50 Li Z H, Nie Y F, Liu B, et al. Materials & Design, 2020, 192, 108709.
51 Wang X B, Zhang L, Song B, et al. Composite Structures, 2022, 300, 116172.
52 Wang X B, Zhang L, Song B, et al. Acta Biomaterialia, 2022, 148, 374.
53 Li X W, Yu X, Chua J W, et al. Small, 2021, 17(24), 2100336.
54 Liu Y B. International Journal of Mechanical Sciences, 2021, 192, 106141.
55 Berger J B, Wadley H N G, Mcmeeking R M. Nature, 2017, 543(7646), 533.
56 Al-Ketan O, Rowshan R, Abu Al-Rub R K. Additive Manufacturing, 2018, 19, 167.
57 Bobbert F S L, Lietaert K, Eftekhari A A, et al. Acta Biomaterialia, 2017, 53, 572.
58 Feng J W, Fu J Z, Yao X H, et al. International Journal of Extreme Manufacturing, 2022, 4(2), 022001.
59 Yang L, Wu S Q, Yan C Z, et al. Additive Manufacturing, 2021, 46, 102214.
60 Shi X, Liao W H, Li P F, et al. Advanced Engineering Materials, 2020, 22(11), 2000453.
61 Yu G S, Li Z B, Li S J, et al. Materials & Design, 2020, 192, 108754.
62 Lu Y T, Zhao W Y, Cui Z T, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 99, 56.
63 Diez-Escudero A, Harlin H, Isaksson P, et al. Journal of Tissue Engineering, 2020, 11, 2041731420956541.
64 Al-Ketan O, Lee D W, Rowshan R, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103520.
65 Soro N, Brodie E G, Abdal-hay A, et al. Materials & Design, 2022, 218, 110688.
66 Zhang L, Feih S, Daynes S, et al. Additive Manufacturing, 2018, 23, 505.
67 Yan C Z, Hao L, Hussein A, et al. International Journal of Machine Tools & Manufacture, 2012, 62, 32.
68 Dixit T, Al-Hajri E, Paul M C, et al. Applied Thermal Engineering, 2022, 210, 118339.
69 Xu S Q, He M, Xu Z C, et al. Additive Manufacturing, 2024, 80, 103981.
70 Zhang C, Zheng H, Yang L, et al. Materials & Design, 2022, 214, 110407.
71 Ahmed N, Barsoum I, Abu Al-Rub R K. Metals, 2022, 12(8), 1344.
72 Lee D W, Khan K A, Abu Al-Rub R K. International Journal of Plasticity, 2017, 95, 1.
73 Chen Z Y, Wu B S, Chen X, et al. Materials Today Communications, 2023, 37, 107352.
74 Qiu N, Zhang J Z, Yuan F Q, et al. Engineering Structures, 2022, 263, 114337.
75 Hu J B, Wang S F, Li B J, et al. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(7), 2615.
76 Guo X, Ding J H, Li X W, et al. International Journal of Mechanical Sciences, 2022, 216, 106977.
77 Qiu N, Zhang J Z, Li C Y, et al. International Journal of Mechanical Sciences, 2023, 246, 108118.
78 Savio G, Meneghello R, Concheri G. Progress in Additive Manufacturing, 2019, 4(3), 281.
79 Zheng X Y, Fu Z B, Du K, et al. Journal of Materials Science, 2018, 53(14), 10194.
80 Feng Y X, Huang T, Gong Y H, et al. Materials & Design, 2022, 222, 111078.
81 Maszybrocka J, Gapinski B, Dworak M, et al. International Journal of Advanced Manufacturing Technology, 2019, 105(7-8), 3411.
82 Zhou H L, He N H, Zhang D Z, et al. Materials Today Communications, 2022, 33, 104740.
[1] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[2] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[3] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[4] 何德健, 王振华, 刘保英, 房晓敏, 徐元清, 丁涛. 二乙基次磷酸铝和三聚氰胺衍生物协效阻燃PA6/GF复合材料[J]. 材料导报, 2025, 39(6): 24020106-8.
[5] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[6] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[7] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[8] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[9] 邹家伟, 刘志超, 王发洲. 基于γ-C2S的蜂窝陶瓷常温制备与性能研究[J]. 材料导报, 2025, 39(4): 24010136-7.
[10] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[11] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[12] 丁来龙, 马明亮, 冯超, 黄微波, 王一凡, 林佳宇, 吴超. 聚脲材料的优化及抗爆抗侵彻性能研究进展[J]. 材料导报, 2025, 39(4): 24010082-9.
[13] 邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
[14] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[15] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed