Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 24030070-10    https://doi.org/10.11896/cldb.24030070
  金属与金属基复合材料 |
纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展
杨旭1, 张天理1,2,3,*, 朱志明2, 徐连勇3, 陈赓4, 杨尚磊1, 方乃文5
1 上海工程技术大学材料科学与工程学院,上海 201620
2 清华大学机械工程系,北京 100084
3 天津大学材料科学与工程学院,天津 300072
4 浙江汉威阀门有限公司,浙江 丽水 323600
5 哈尔滨焊接研究所有限公司,哈尔滨 150028
Research Progress on the Inhibition Mechanism and Influencing Factors of Nanoparticles on Solidification Cracks in Aluminum Alloy Welding
YANG Xu1, ZHANG Tianli1,2,3,*, ZHU Zhiming2, XU Lianyong3, CHEN Geng4, YANG Shanglei1, FANG Naiwen5
1 School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
2 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
3 School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
4 Zhejiang Hanwei Valve Co., Ltd., Lishui 323600, Zhejiang, China
5 Harbin Welding Institute Co., Ltd., Harbin 150028, China
下载:  全 文 ( PDF ) ( 23146KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,铝合金因其低密度、高比强度、易加工、良好的耐腐蚀性以及优异的导电性和导热性,在制造业中的应用大幅度增加。但是,铝合金的高导热系数和高冷却速度使其在焊接过程中容易出现凝固裂纹,严重影响焊接接头的力学性能。纳米颗粒具有强度高、模量高、热稳定性好等优点,可作为强化材料应用于铝合金焊接中。添加纳米颗粒的铝合金及其焊缝具有细化晶粒、降低焊接热裂纹、强化性能的作用,已被用于航空、航天、汽车、高速动车等高强度铝合金的焊接领域。本文综述了铝合金凝固裂纹的形成机理和影响因素,以及纳米颗粒对铝合金焊接凝固裂纹抑制机理及焊缝组织的影响规律,最后展望了含纳米颗粒铝合金在焊接领域的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨旭
张天理
朱志明
徐连勇
陈赓
杨尚磊
方乃文
关键词:  铝合金  凝固裂纹  纳米颗粒  微观组织  力学性能    
Abstract: Aluminum alloys are widely used in the manufacturing industry due to their low density, high specific strength, ease of processability, good corrosion resistance, and excellent electrical and thermal conductivity. However, it is easy to produce solidification cracks due to the high thermal conductivity and rapid cooling rate of aluminum alloys in the welding process, which seriously affect the mechanical properties of the welded joints. Nanoparticles(NPs), with the advantages of high strength, high modulus and good thermal stability, can be added as reinforcing materials in aluminum alloys welding process to refine grains, reduce hot welding cracks, and enhance the comprehensive properties. This paper reviews the formation mechanism and influencing factors of aluminum alloy solidification cracks, as well as the influence of NPs on the inhibition mechanism of aluminum alloy welding solidification cracks and weld bead. Finally, the future trends in the development of aluminum alloys containing NPs in the field of welding are pointed out.
Key words:  aluminum alloy    solidification crack    nanoparticle    microstructure    mechanical property
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TG444  
基金资助: 上海市Ⅲ类高峰学科——材料科学与工程(高能束智能加工与绿色制造)
通讯作者:  *张天理,博士,上海工程技术大学材料科学与工程学院副教授、硕士研究生导师。目前主要从事焊接冶金与焊接性、焊接材料与工艺方面的研究。zhangtianli925@163.com   
作者简介:  杨旭,上海工程技术大学材料科学与工程学院硕士研究生,在张天理的指导下进行研究。目前主要研究领域为铝合金焊丝研发。
引用本文:    
杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
YANG Xu, ZHANG Tianli, ZHU Zhiming, XU Lianyong, CHEN Geng, YANG Shanglei, FANG Naiwen. Research Progress on the Inhibition Mechanism and Influencing Factors of Nanoparticles on Solidification Cracks in Aluminum Alloy Welding. Materials Reports, 2025, 39(6): 24030070-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030070  或          https://www.mater-rep.com/CN/Y2025/V39/I6/24030070
1 Li H, Yan W J, Zhang Y, et al. Journal of Materials Engineering, 2022, 50(2), 50(in Chinese).
李红, 闫维嘉, 张禹, 等. 材料工程, 2022, 50(2), 50.
2 Li Z X, Tian Z, Li H, et al. Materials Repotes, 2022, 36(1), 20090070(in Chinese).
栗卓新, 田振, 李红, 等. 材料导报, 2022, 36(1), 20090070.
3 Karabulut Y, Ünal R. Journal of Materials Science, 2022, 57, 19212.
4 Sujai S. Ramkumar K D. Journal of Manufacturing Processes, 2020, 58, 998.
5 Pumphrey W W. Japan Institute of Metals & Materials, 1948, 75, 230.
6 Pereira M, Taniguchi C, Brandi S D,et al. Quarterly Journal of Japan Welding Society, 1994, 12, 342.
7 Kou S. Metals, 2021, 11, 1442.
8 Prokhorov N N. Russian Castings Production, 1962, 2, 172.
9 Prokhorov N N. Svar Proizv, 1956, 6, 5.
10 Prokhorov N N. Svar Proizv, 1962, 4, 1.
11 Bakir N, Üstündag ü, Gumenyuk A, Rethmeier M. Procedia CIRP, 2022, 111, 397.
12 Apblett W R, Pellini W S. Welding Journal, 1954, 33, 83.
13 Kou S. Journal of Metals,2023, 55, 37.
14 Borland J C. ACI Materials Journal, 1960, 7, 508.
15 Weller D, Hagenlocher C, Steeb T, et al. Procedia CIRP, 2018, 74, 430.
16 Norouzian M, Elahi M A, Plapper P. Journal of Advanced Joining Processes, 2023, 7, 100139.
17 Fukuhisa M, Hiroji N, Kazuhiko S. Transactions of the Japan Welding Research Institute, 1982, 11, 67.
18 Shankar V, Gill T P S, Mannan S L, et al. Sadhana-academy Proceedings in Engineering Sciences, 2003, 28, 359.
19 Kadoi K, Fujinaga A, Yamamoto M, K, et al. Welding in the World, 2013, 57, 383.
20 Prokhorov N N. Transactions of the Japan Welding Society, 1971, 2, 205.
21 Huo W J, Bakir N, Gumenyuk A, et al. Applied Sciences, 2023, 13, 2930.
22 Li Y, Li H X, Katgerman L, et al. Progress in Materials Science, 2021, 117, 100741.
23 Rappaz M, Drezet J M, Gremaud M. Metallurgical and Materials Tran-sactions A, 1999, 30, 448.
24 Suyitno, Kool W H, Katgerman L. Metallurgical and Materials Transactions A, 2005, 36, 1537.
25 Easton M, Grandfield J F, StJohn D H, et al. Materials Science Forum, 2006, 519, 1675.
26 Tang Z, Vollertsen F. Welding in the World, 2014, 58, 355.
27 Liu J, Kou S. Acta Materialia, 2016, 10, 84.
28 Liu J, Kou S. Acta Materialia, 2017, 125, 513.
29 Soysal T, Kou S. Acta Materialia, 2018, 143, 181.
30 Kou S. Acta Materialia, 2015, 88, 366.
31 Chen C, Zhu J P, Liu Q X X, et al. Journal of Manufacturing Processes, 2023, 101, 795.
32 Manh N H, Le V T, Han D L, et al. Vacuum, 2023, 207, 111558.
33 Ramana G V, Yelamasetti B, Vardhan T V. Materials Today, 2021, 46, 878.
34 Li H, Zou J, Yao J, Peng H. Journal of Alloys and Compounds, 2017, 727, 531.
35 Yang B, Fu Z, Li T, et al. Materials Research Express, 2020, 6, 1265d6.
36 Zeng Z, Li X B, Peng B, et al. Transactions of the Indian Institute of Metals, 2015, 68, 341.
37 Zhang P L, Jia Z Y, Yu Z S, et al. Optics and Laser Technology, 2021, 140, 107094.
38 Holzer M, Hofmann K, Mann V, et al. Physics Procedia, 2016, 83, 463.
39 Chua S F, Chen H C, Bi G. Journal of Manufacturing Processes, 2019, 38, 1.
40 Hayat F. Engineering Science and Technology, 2022, 34, 101093.
41 Hosseini S A, Abdollah-Zadeh A, Naffakh-Moosavy H, et al. Journal of Manufacturing Processes, 2019, 46, 147.
42 Gu J, Bai J, Ding J, et al. Journal of Materials Processing Technology, 2018, 262, 210.
43 Meengam C, Chainarong S, Muangjunburee P. Materials Today, 2017, 4, 1303.
44 Singh G, Singh K, Singh J. Transactions of the Indian Institute of Metals, 2011, 64, 325.
45 Kah P, Rajan R, Martikainen J, et al. International Journal of Mechanical and Materials Engineering, 2015, 26.
46 Feng Y Q, Luo Z, Li Y, et al. Materials and Manufacturing Processes, 2016, 31, 2077.
47 Opprecht M, Garandet J P, Roux G, et al. Acta Materialia, 2020, 197, 40.
48 Ma C, Chen L Y, Cao C Z, et al. Nature Communication, 2017, 8, 14178.
49 Wu J G, Zhou S Y, Li X C. Scientific Engineering, 2015, 137, 011013.
50 Huang S J, Peng W Y, Visic B, et al. Materials Science and Engineering A, 2018, 709, 290.
51 Shin S E, Bae D H. Composites Part B-Engineering, 2018, 134, 61.
52 Kannan C, Ramanujam R, Journal of Advanced Research, 2017, 8, 309.
53 Joshi T C, Prakash U, Dabhade V V. Journal of Materials Engineering and Performance, 2016, 25, 1889.
54 Fattahi M, Mohammady M, Sajjadi N, et al. Journal of Materials Processing Technology, 2015, 217, 21.
55 Zuo M, Sokoluk M, Cao C Z, et al. Scientific Reports, 2019, 9, 1.
56 Martin J H, Yahata B D, Hundley J M, et al. Nature, 2017, 549, 365.
57 Sokoluk M, Cao C Z, Pan S H, et al. Nature Communication, 2019, 10, 1.
58 Murali N, Sokoluk M, Li X. Materials Letters, 2021, 283, 1.
59 Oropeza D, Hofmann D C, Williams K, et al. Journal of Alloys And Compounds, 2020, 834, 154987.
60 Abdollahi A, Nganbe M, Kabir A S. Journal of Manufacturing Processes, 2022, 81, 828.
61 Yuan J, Pan S H, Zheng T Q, et al. Materials Science and Engineering A, 2021, 822, 141691.
62 Bashirnezhad K, Bazri B, Reza S M, et al. International Communications in Heat and Mass Transfer, 2016, 73, 114.
63 Abdollahi A, Nganbe M, Kabir A S. Journal of Manufacturing Processes, 2023, 103, 90.
64 Zhong S B, Han S, Chen J Q, et al. Materials Today Communications,2022, 31, 103260.
65 Huang T, Xu J H, Yu L H, et al. Materials Today Communications, 2021, 29, 102835.
66 Gu M, Chen J Q, Luo Z, et al. Materials Today Communications, 2023, 37, 107142.
67 Bermingham M J, StJohn D H, Krynen J, et al. Acta Materialia, 2019, 168, 261.
68 Tan Q Y, Fan Z Q, Tang X Q, et al. Materials Science and Engineering A, 2021, 821, 141638.
69 Cheng Y, Xu J H, Yu L H. Journal of Materials Research and Technology, 2021, 15, 1667.
70 Ma K, Wen H, Hu T, et al. Acta Materialia, 2014, 62, 141.
71 Xi S Y, Ma G D, Li L, et al. Journal of Materials Research and Technology, 2021, 12, 581.
72 Chao Z L, Zhang L C, Jiang L T, et al. Journal of Alloys and Compounds, 2019, 775, 290.
73 Choi H, Cho W, Konishi H, et al. Metallurgical and Materials Transactions A, 2013, 44, 1897.
74 Kianezhad M, Raouf A H. Journal of Materials Processing Technology, 2019, 263, 356.
[1] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[2] 李欢, 张健, 伍世英, 刘千喜. 焊头形状对Cu/Al大功率超声焊接温度场及塑性变形的影响[J]. 材料导报, 2025, 39(6): 24010115-6.
[3] 果春焕, 王磊, 邵帅齐, 王树邦, 李渐亮, 孙倩斐, 姜风春. 激光粉末床熔融金属点阵结构力学性能研究进展[J]. 材料导报, 2025, 39(6): 24040109-10.
[4] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[5] 何德健, 王振华, 刘保英, 房晓敏, 徐元清, 丁涛. 二乙基次磷酸铝和三聚氰胺衍生物协效阻燃PA6/GF复合材料[J]. 材料导报, 2025, 39(6): 24020106-8.
[6] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[7] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[8] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[9] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[10] 邹家伟, 刘志超, 王发洲. 基于γ-C2S的蜂窝陶瓷常温制备与性能研究[J]. 材料导报, 2025, 39(4): 24010136-7.
[11] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[12] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[13] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[14] 丁来龙, 马明亮, 冯超, 黄微波, 王一凡, 林佳宇, 吴超. 聚脲材料的优化及抗爆抗侵彻性能研究进展[J]. 材料导报, 2025, 39(4): 24010082-9.
[15] 邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed