Research Progress on the Inhibition Mechanism and Influencing Factors of Nanoparticles on Solidification Cracks in Aluminum Alloy Welding
YANG Xu1, ZHANG Tianli1,2,3,*, ZHU Zhiming2, XU Lianyong3, CHEN Geng4, YANG Shanglei1, FANG Naiwen5
1 School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China 2 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China 3 School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China 4 Zhejiang Hanwei Valve Co., Ltd., Lishui 323600, Zhejiang, China 5 Harbin Welding Institute Co., Ltd., Harbin 150028, China
Abstract: Aluminum alloys are widely used in the manufacturing industry due to their low density, high specific strength, ease of processability, good corrosion resistance, and excellent electrical and thermal conductivity. However, it is easy to produce solidification cracks due to the high thermal conductivity and rapid cooling rate of aluminum alloys in the welding process, which seriously affect the mechanical properties of the welded joints. Nanoparticles(NPs), with the advantages of high strength, high modulus and good thermal stability, can be added as reinforcing materials in aluminum alloys welding process to refine grains, reduce hot welding cracks, and enhance the comprehensive properties. This paper reviews the formation mechanism and influencing factors of aluminum alloy solidification cracks, as well as the influence of NPs on the inhibition mechanism of aluminum alloy welding solidification cracks and weld bead. Finally, the future trends in the development of aluminum alloys containing NPs in the field of welding are pointed out.
1 Li H, Yan W J, Zhang Y, et al. Journal of Materials Engineering, 2022, 50(2), 50(in Chinese). 李红, 闫维嘉, 张禹, 等. 材料工程, 2022, 50(2), 50. 2 Li Z X, Tian Z, Li H, et al. Materials Repotes, 2022, 36(1), 20090070(in Chinese). 栗卓新, 田振, 李红, 等. 材料导报, 2022, 36(1), 20090070. 3 Karabulut Y, Ünal R. Journal of Materials Science, 2022, 57, 19212. 4 Sujai S. Ramkumar K D. Journal of Manufacturing Processes, 2020, 58, 998. 5 Pumphrey W W. Japan Institute of Metals & Materials, 1948, 75, 230. 6 Pereira M, Taniguchi C, Brandi S D,et al. Quarterly Journal of Japan Welding Society, 1994, 12, 342. 7 Kou S. Metals, 2021, 11, 1442. 8 Prokhorov N N. Russian Castings Production, 1962, 2, 172. 9 Prokhorov N N. Svar Proizv, 1956, 6, 5. 10 Prokhorov N N. Svar Proizv, 1962, 4, 1. 11 Bakir N, Üstündag ü, Gumenyuk A, Rethmeier M. Procedia CIRP, 2022, 111, 397. 12 Apblett W R, Pellini W S. Welding Journal, 1954, 33, 83. 13 Kou S. Journal of Metals,2023, 55, 37. 14 Borland J C. ACI Materials Journal, 1960, 7, 508. 15 Weller D, Hagenlocher C, Steeb T, et al. Procedia CIRP, 2018, 74, 430. 16 Norouzian M, Elahi M A, Plapper P. Journal of Advanced Joining Processes, 2023, 7, 100139. 17 Fukuhisa M, Hiroji N, Kazuhiko S. Transactions of the Japan Welding Research Institute, 1982, 11, 67. 18 Shankar V, Gill T P S, Mannan S L, et al. Sadhana-academy Proceedings in Engineering Sciences, 2003, 28, 359. 19 Kadoi K, Fujinaga A, Yamamoto M, K, et al. Welding in the World, 2013, 57, 383. 20 Prokhorov N N. Transactions of the Japan Welding Society, 1971, 2, 205. 21 Huo W J, Bakir N, Gumenyuk A, et al. Applied Sciences, 2023, 13, 2930. 22 Li Y, Li H X, Katgerman L, et al. Progress in Materials Science, 2021, 117, 100741. 23 Rappaz M, Drezet J M, Gremaud M. Metallurgical and Materials Tran-sactions A, 1999, 30, 448. 24 Suyitno, Kool W H, Katgerman L. Metallurgical and Materials Transactions A, 2005, 36, 1537. 25 Easton M, Grandfield J F, StJohn D H, et al. Materials Science Forum, 2006, 519, 1675. 26 Tang Z, Vollertsen F. Welding in the World, 2014, 58, 355. 27 Liu J, Kou S. Acta Materialia, 2016, 10, 84. 28 Liu J, Kou S. Acta Materialia, 2017, 125, 513. 29 Soysal T, Kou S. Acta Materialia, 2018, 143, 181. 30 Kou S. Acta Materialia, 2015, 88, 366. 31 Chen C, Zhu J P, Liu Q X X, et al. Journal of Manufacturing Processes, 2023, 101, 795. 32 Manh N H, Le V T, Han D L, et al. Vacuum, 2023, 207, 111558. 33 Ramana G V, Yelamasetti B, Vardhan T V. Materials Today, 2021, 46, 878. 34 Li H, Zou J, Yao J, Peng H. Journal of Alloys and Compounds, 2017, 727, 531. 35 Yang B, Fu Z, Li T, et al. Materials Research Express, 2020, 6, 1265d6. 36 Zeng Z, Li X B, Peng B, et al. Transactions of the Indian Institute of Metals, 2015, 68, 341. 37 Zhang P L, Jia Z Y, Yu Z S, et al. Optics and Laser Technology, 2021, 140, 107094. 38 Holzer M, Hofmann K, Mann V, et al. Physics Procedia, 2016, 83, 463. 39 Chua S F, Chen H C, Bi G. Journal of Manufacturing Processes, 2019, 38, 1. 40 Hayat F. Engineering Science and Technology, 2022, 34, 101093. 41 Hosseini S A, Abdollah-Zadeh A, Naffakh-Moosavy H, et al. Journal of Manufacturing Processes, 2019, 46, 147. 42 Gu J, Bai J, Ding J, et al. Journal of Materials Processing Technology, 2018, 262, 210. 43 Meengam C, Chainarong S, Muangjunburee P. Materials Today, 2017, 4, 1303. 44 Singh G, Singh K, Singh J. Transactions of the Indian Institute of Metals, 2011, 64, 325. 45 Kah P, Rajan R, Martikainen J, et al. International Journal of Mechanical and Materials Engineering, 2015, 26. 46 Feng Y Q, Luo Z, Li Y, et al. Materials and Manufacturing Processes, 2016, 31, 2077. 47 Opprecht M, Garandet J P, Roux G, et al. Acta Materialia, 2020, 197, 40. 48 Ma C, Chen L Y, Cao C Z, et al. Nature Communication, 2017, 8, 14178. 49 Wu J G, Zhou S Y, Li X C. Scientific Engineering, 2015, 137, 011013. 50 Huang S J, Peng W Y, Visic B, et al. Materials Science and Engineering A, 2018, 709, 290. 51 Shin S E, Bae D H. Composites Part B-Engineering, 2018, 134, 61. 52 Kannan C, Ramanujam R, Journal of Advanced Research, 2017, 8, 309. 53 Joshi T C, Prakash U, Dabhade V V. Journal of Materials Engineering and Performance, 2016, 25, 1889. 54 Fattahi M, Mohammady M, Sajjadi N, et al. Journal of Materials Processing Technology, 2015, 217, 21. 55 Zuo M, Sokoluk M, Cao C Z, et al. Scientific Reports, 2019, 9, 1. 56 Martin J H, Yahata B D, Hundley J M, et al. Nature, 2017, 549, 365. 57 Sokoluk M, Cao C Z, Pan S H, et al. Nature Communication, 2019, 10, 1. 58 Murali N, Sokoluk M, Li X. Materials Letters, 2021, 283, 1. 59 Oropeza D, Hofmann D C, Williams K, et al. Journal of Alloys And Compounds, 2020, 834, 154987. 60 Abdollahi A, Nganbe M, Kabir A S. Journal of Manufacturing Processes, 2022, 81, 828. 61 Yuan J, Pan S H, Zheng T Q, et al. Materials Science and Engineering A, 2021, 822, 141691. 62 Bashirnezhad K, Bazri B, Reza S M, et al. International Communications in Heat and Mass Transfer, 2016, 73, 114. 63 Abdollahi A, Nganbe M, Kabir A S. Journal of Manufacturing Processes, 2023, 103, 90. 64 Zhong S B, Han S, Chen J Q, et al. Materials Today Communications,2022, 31, 103260. 65 Huang T, Xu J H, Yu L H, et al. Materials Today Communications, 2021, 29, 102835. 66 Gu M, Chen J Q, Luo Z, et al. Materials Today Communications, 2023, 37, 107142. 67 Bermingham M J, StJohn D H, Krynen J, et al. Acta Materialia, 2019, 168, 261. 68 Tan Q Y, Fan Z Q, Tang X Q, et al. Materials Science and Engineering A, 2021, 821, 141638. 69 Cheng Y, Xu J H, Yu L H. Journal of Materials Research and Technology, 2021, 15, 1667. 70 Ma K, Wen H, Hu T, et al. Acta Materialia, 2014, 62, 141. 71 Xi S Y, Ma G D, Li L, et al. Journal of Materials Research and Technology, 2021, 12, 581. 72 Chao Z L, Zhang L C, Jiang L T, et al. Journal of Alloys and Compounds, 2019, 775, 290. 73 Choi H, Cho W, Konishi H, et al. Metallurgical and Materials Transactions A, 2013, 44, 1897. 74 Kianezhad M, Raouf A H. Journal of Materials Processing Technology, 2019, 263, 356.