Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 24020106-8    https://doi.org/10.11896/cldb.24020106
  高分子与聚合物基复合材料 |
二乙基次磷酸铝和三聚氰胺衍生物协效阻燃PA6/GF复合材料
何德健1, 王振华1, 刘保英1,2,*, 房晓敏1,2, 徐元清1,2, 丁涛1,2
1 河南大学化学与分子科学学院,河南 开封 475004
2 河南省功能材料与催化反应工程研究中心,河南 开封 475004
Flame Retardant PA6/GF Composites Based on ADP Synergistic Flame Retardant System
HE Dejian1, WANG Zhenhua1, LIU Baoying1,2,*, FANG Xiaomin1,2, XU Yuanqing1,2, DING Tao1,2
1 College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
2 Henan Engineering Research Center of Functional Materials and Catalytic Reaction, Kaifeng 475004, Henan, China
下载:  全 文 ( PDF ) ( 16623KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以二乙基次膦酸铝(ADP)为主阻燃剂,三聚氰胺聚磷酸盐(MPP)、三聚氰胺氰尿酸盐(MCA)为协效阻燃剂用于玻璃纤维增强聚酰胺6复合材料(PA6/GF)的阻燃改性。研究结果表明:与MCA相比,MPP与ADP的复配能发挥更好的协效阻燃作用,其中当总阻燃剂的添加量为10%(如无特殊说明,均为质量分数)、ADP与MPP复配的质量比为8∶1时,PA6/GF/ADP∶MPP(8∶1)阻燃复合材料垂直燃烧等级能够通过UL-94 V-1级,极限氧指数值(LOI)达到29.7%。与PA6/GF/ADP复合材料相比,PA6/GF/ADP∶MPP(8∶1)阻燃复合材料的热释放速率峰值(pk-HRR)和总热释放量(THR)分别降低至307.6 kW/m2和154.6 MJ/m2,分别下降了3.6%和6.4%,且锥形量热测试的残炭量高达40.6%,这表明MPP能够提升阻燃体系在凝聚相中的阻燃效果。此外,MPP的引入有利于提升复合材料的拉伸强度,与PA6/GF/ADP复合材料相比,PA6/GF/ADP∶MPP(8∶1)的拉伸强度提升了17.6%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何德健
王振华
刘保英
房晓敏
徐元清
丁涛
关键词:  玻璃纤维增强聚酰胺6  二乙基次膦酸铝(ADP)  三聚氰胺衍生物  阻燃性能  力学性能    
Abstract: In this work, aluminum diethylphosphonate (ADP), in company with melamine polyphosphate (MPP) or melamine cyanurate (MCA), was used to flame retard glass fiber reinforced polyamide 6 composites (PA6/GF). The research results showed that compared with MCA, the combination of MPP and ADP can play a better synergistic and flame retardant effect. When the total amount of flame retardant was 10wt% and the mass ratio of ADP and MPP was 8∶1, the limiting oxygen index (LOI) value of PA6/GF/ADP∶MPP(8∶1) composite was 29.7%, while the vertical combustion grade reached UL-94 V-1 rating. Compared with PA6/GF/ADP composites, the peak heat release rate (pk-HRR) and total heat release capacity (THR) of PA6/GF/ADP∶MPP(8∶1) composite decreased to 307.6 kW/m2 and 154.6 MJ/m2, respectively. Meanwhile, the carbon residue of the composite in cone calorimetry test was as high as 40.6%, which indicated that MPP can improve the flame retardant effect of the flame retardant system in the condensed phase. In addition, the introduction of MPP was beneficial to improve the tensile strength of the composites. Compared with PA6/GF/ADP composites, the tensile strength of PA6/GF/ADP∶MPP(8∶1) increased by 17.6%.
Key words:  glass fiber reinforced polyamide 6    aluminum diethylphosphonate (ADP)    melamine derivatives    fire resistance    mechanical pro-perty
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TQ327.1  
基金资助: 河南省科技攻关项目(232102230036);河南省博士后科研资助项目(J23029Y)
通讯作者:  *刘保英,博士,河南大学化学与分子科学学院副教授、博士研究生导师。目前主要从事高性能阻燃功能复合材料的设计、制备及应用方面的研究。liubaoying666@163.com   
作者简介:  何德健,河南大学化学与分子科学学院硕士研究生,主要研究方向为高性能阻燃剂及阻燃功能高分子材料的开发。
引用本文:    
何德健, 王振华, 刘保英, 房晓敏, 徐元清, 丁涛. 二乙基次磷酸铝和三聚氰胺衍生物协效阻燃PA6/GF复合材料[J]. 材料导报, 2025, 39(6): 24020106-8.
HE Dejian, WANG Zhenhua, LIU Baoying, FANG Xiaomin, XU Yuanqing, DING Tao. Flame Retardant PA6/GF Composites Based on ADP Synergistic Flame Retardant System. Materials Reports, 2025, 39(6): 24020106-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020106  或          https://www.mater-rep.com/CN/Y2025/V39/I6/24020106
1 Kim S E, Ahn J G, Ahn S, et al. Applied Sciences, 2022, 12(10), 4838.
2 Kuram E. Journal of Composite Materials, 2022, 56(3), 441.
3 Hu W, Yin H, Yuan H, et al. Composites Science and Technology, 2023, 233, 109927.
4 Yan C, Yan P, Xu H, et al. Polymer Composites, 2022, 43(2), 1022.
5 Hua Y, Ding B, Jiang S, et al. Composites Communications, 2022, 35, 101308.
6 Elsabbagh A, Steuernagel L, Ring J. Composites Part B:Engineering, 2017, 108, 325.
7 Qian X, Shi C, Wan M, et al. Composites Communications, 2023, 37, 101442.
8 You Y L, Liu C M, Li D X, et al. Journal of Central South University, 2019, 26(1), 88.
9 Tomiak F, Zitzmann M, Drummer D. Polymers, 2023, 15(20), 4100.
10 Pan Y, Song L, Wang W, et al. Journal of Applied Polymer Science, 2020, 137(35), 49027.
11 Feng H, Qiu Y, Qian L, et al. Polymers, 2019, 11(1), 74.
12 Seefeldt H, Duemichen E, Braun U. Polymer International, 2013, 62(11), 1608.
13 Xiao Y, Mu X, Wang B, et al. Composites Part B:Engineering, 2021, 205, 108536.
14 Casetta M, Michaux G, Ohl B, et al. Polymer Degradation and Stability, 2018, 148, 95.
15 Unnikrishnan V, Zabihi O, Li Q, et al. Polymer Composites, 2022, 43(9), 5877.
16 Isitman N A, Gunduz H O, Kaynak C. Polymer Degradation and Stability, 2009, 94(12), 2241.
17 Li X. Iranian Polymer Journal, 2022, 31(8), 975.
18 Turski S D A, Huth C, Schartel B. Polymer Degradation and Stability, 2020, 171, 109048.
19 Hou W, Fu Y, Zeng C, et al. Journal of Applied Polymer Science, 2020, 137(2), 47298.
20 Tomiak F, Schoeffel A, Rathberger K, et al. Polymers, 2022, 14(6), 1263.
21 Sun J, Gu X, Coquelle M, et al. Polymers for Advanced Technologies, 2014, 25(12), 1552.
22 Umar M, Ofem M I, Anwar A S, et al. Journal of King Saud University-Engineering Sciences, 2022, 34(2), 77.
23 Zhou R, Mu J, Sun X, et al. Safety Science, 2020, 131, 104849.
24 Yang S, Hu Y, Zhang Q. High Performance Polymers, 2019, 31(2), 186.
25 Zhao W, Li Y, Li Q, et al. Polymers, 2019, 11(2), 380.
26 Feng H, Li D, Cheng B, et al. Journal of Hazardous Materials, 2022, 424, 127420.
27 Nguyen-Ha T M, Nguyen T B, Nguyen T A, et al. Chemical Engineering Journal, 2023, 474, 145585.
28 Kuan H T N, Tan M Y, Shen Y, et al. Composites and Advanced Materials, 2021, 30, 26349833211007502.
29 Yang Z, Kang X, Lu S, et al. Journal of Applied Polymer Science, 2023, 140(4), e53385.
[1] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[2] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[3] 果春焕, 王磊, 邵帅齐, 王树邦, 李渐亮, 孙倩斐, 姜风春. 激光粉末床熔融金属点阵结构力学性能研究进展[J]. 材料导报, 2025, 39(6): 24040109-10.
[4] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[5] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[6] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[7] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[8] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[9] 邹家伟, 刘志超, 王发洲. 基于γ-C2S的蜂窝陶瓷常温制备与性能研究[J]. 材料导报, 2025, 39(4): 24010136-7.
[10] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[11] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[12] 丁来龙, 马明亮, 冯超, 黄微波, 王一凡, 林佳宇, 吴超. 聚脲材料的优化及抗爆抗侵彻性能研究进展[J]. 材料导报, 2025, 39(4): 24010082-9.
[13] 邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
[14] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[15] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed