高分子与聚合物基复合材料
|
湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测
汪依宁, 陈东东* , 肖守讷, 王明猛, 何子坤
西南交通大学轨道交通运载系统全国重点实验室,成都 610031
Degradation Mechanisms and Performance Prediction of Carbon Fiber Reinforced Polymer Composites Subjected to Hydrothermal Aging
WANG Yining, CHEN Dongdong* , XIAO Shoune, WANG Mingmeng, HE Zikun
State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, China
摘要 为了深入研究湿热老化环境下碳纤维增强树脂基复合材料(Carbon fiber reinforced polymers,CFRP)力学性能退化行为,开展了30 ℃和50 ℃两种水温下CFRP材料的浸水老化试验,随后进行老化0、6、12、18、24、30 d后样件的拉伸和压缩性能测试,并结合SEM分析老化前后CFRP试件破坏形貌。基于有限元软件ABAQUS二次开发功能,构建了考虑湿热老化效应的层内断裂和层间分层失效的二维本构模型,并对老化前和饱和吸水状态下CFRP力学性能进行计算。结果表明:30 ℃和50 ℃两种温度下,CFRP吸湿行为均符合菲克定律;随温度提升和老化时间的延长,CFRP力学性能呈现出下降趋势。此外,相比拉伸性能,CFRP压缩性能受湿热环境影响更大,在50 ℃老化30 d后,CFRP压缩强度和模量降幅分别为39.3%和10.8%,远高于拉伸强度和模量的降幅(8.11%和7.08%)。分析原因是CFRP浸水老化过程中,水分子扩散会导致纤维-基体界面与基体性能恶化,而CFRP压缩性能对以上变化更敏感。
关键词:
碳纤维增强树脂基复合材料
湿热老化
力学性能
数值模拟
Abstract: To investigate the mechanical performance degradation mechanisms of carbon fiber reinforced polymers (CFRP) in hydrothermal environments, samples were immersed in water baths filled with distilled water at temperatures of 30 ℃ and 50 ℃, respectively. Tensile and compressive tests were performed using CFRP samples aged for 0 (unaged), 6, 12, 18, 24, and 30 days. Effects of hygrothermal aging on surface morphology and failure modes were analyzed via SEM (Scanning Electron Microscopy). A two-dimensional constitutive model, which was capable of simulating the influences of hygrothermal aging on the intralaminar cracking and interlaminar delamination, was developed utilizing the user subroutine VUMAT of the ABAQUS software. Mechanical performance calculations for CFRP composites were conducted under both pre-aging and saturated water absorption conditions. Experimental results showed that the moisture absorption behavior of CFRP composites followed Fick's law at both 30 ℃ and 50 ℃. Mechanical properties of CFRP composites showed a decrease with the temperature/aging time increasing. Moreover, compared to the tensile performance, the compressive properties of CFRP composites were more sensitive to the variation of environments. After 30 days of aging in a 50 ℃ environment, the tensile strength and modulus decreased by 8.11% and 7.08%, respectively, which was worse than the 39.3% and 10.8% reductions for the compressive strength and modulus, respectively. Deterioration of the fiber-matrix interface and the epoxy matrix caused by moisture diffusion was identified as the reason for compressive performance degradation.
Key words:
carbon fiber reinforced polymers (CFRP)
hydrothermal aging
mechanical performance
numerical simulation
出版日期: 2025-03-25
发布日期: 2025-03-24
基金资助: 国家重点研发计划(2022YFB4301202)
通讯作者:
*陈东东, 博士,西南交通大学轨道交通运载系统全国重点实验室副研究员。主要从事面向车辆结构轻量化与耐撞性方面的研究工作,研究领域包括冲击载荷下复合材料及结构失效、薄壁结构耐撞性设计和多尺度建模方法等。ccd-2021@swjtu.edu.cn
作者简介: 汪依宁,西南交通大学轨道交通运载系统全国重点实验室硕士研究生,主要研究领域为轨道车辆轻量化与耐撞性。
引用本文:
汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
WANG Yining, CHEN Dongdong, XIAO Shoune, WANG Mingmeng, HE Zikun. Degradation Mechanisms and Performance Prediction of Carbon Fiber Reinforced Polymer Composites Subjected to Hydrothermal Aging. Materials Reports, 2025, 39(6): 23110140-8.
链接本文:
https://www.mater-rep.com/CN/10.11896/cldb.23110140
或
https://www.mater-rep.com/CN/Y2025/V39/I6/23110140
1 Xiao S,Jiang L,Jiang W,et al.Journal of Traffic and Transportation Engineering ,2021,21(1),154(in Chinese). 肖守讷,江兰馨,蒋维,等.交通运输工程学报,2021,21(1),154. 2 Li M,Zhang L.China Textile Leader ,2020(7),19(in Chinese). 李明高,张丽娇.纺织导报,2020(7),19. 3 Shen C H,Spring G S.Journal of Composite Materials ,1976,10(1),2. 4 Scida D,Assarar M,Poilane C,et al.Composites Part B:Engineering ,2013,48,51. 5 Sun P,Zhao Y,Luo Y,et al.Materials & Design ,2011,32(8-9),4341. 6 Grammatikos S A,Evernden M,Mitchels J,et al.Materials & Design ,2016,96,283. 7 Sugiman S,Gpzali M H,Setyawan P D.Advanced Composite Materials ,2019,28(1),87. 8 Wu R,Li Y,Yu T.Acta Material Composite Sinica ,2022,39(9),4406(in Chinese). 吴瑞,李岩,于涛.复合材料学报,2022,39(9),4406. 9 Wei J,Liu M,Gao J,et al.Acta Material Composite Sinica ,2023,40(6),3279(in Chinese). 魏建辉,刘明,高进城,等.复合材料学报,2023,40(6),3279. 10 Cesar D S J,Ávila D O,Panzera T H,et al.Composites Part B:Engineering ,2020,202,108380. 11 Leblanc J,Cavallaro P,Torres J,et al.International Journal of Lightweight Materials and Manufacture ,2020,3(4),344. 12 Fiore V,Calabrese L,Di Bella G,et al.Composites Part B:Engineering ,2016,93,35. 13 Ding A,Wang J,Ni A,et al.Composite Structures ,2019,213,71. 14 Wang D,Sun Y,Xie K,et al.Acta Material Composite Sinica ,2022,39(3),1353(in Chinese). 王登霞,孙岩,谢可勇,等.复合材料学报,2022,39(3),1353. 15 Tan W,Na J,Ren J,et al.Acta Material Composite Sinica ,2022,37(4),859(in Chinese). 谭伟,那景新,任俊铭,等.复合材料学报,2020,37(4),859. 16 Attukur Nandagopal R,Gin Boay C,Narasimalu S.Composite Structures ,2020,236,111876. 17 Mei J,Tan P J,Liu J,et al.Composites Part A:Applied Science and Manufacturing ,2019,127,105647. 18 Gholami M,Afrasiab H,Baghestani A M,et al.Composite Structures ,2021,266,113819. 19 Feng Y,Ma B,Cui R,et al.Composite Structures ,2020,242,112132. 20 Fuller J,Mitchell S,Pozegic T,et al.Composites Part B:Engineering ,2021,227,109388. 21 Silva L V D,Silva F W D,Tarpani J R,et al.Materials & Design ,2016,110,245. 22 Wang Y,Meng Z,Zhu W,et al.Construction and Building Materials ,2021,294,123538. 23 Na J,Tan W,Mu W.Journal of Traffic and Transportation Engineering ,2020,20(4),134(in Chinese). 那景新,谭伟,慕文龙,等.交通运输工程学报,2020,20(4),134. 24 Li C,Guo R,Wang J,et al.Acta Materiae Compositae Sinica ,2021,38(10),3290(in Chinese). 李承高,郭瑞,王俊琦,等.复合材料学报,2021,38(10),3290. 25 Sun G,Zuo W,Chen D,et al.Thin-Walled Structures ,2021,164,107769. 26 Zhang Y,Wang J,Wei J,et al.Acta Materiae Compositae Sinica ,2023,40(3),1406(in Chinese). 张裕恒,王继辉,魏建辉,等.复合材料学报,2023,40(3),1406. 27 Mensitieri G,Iannone M.Ageing of Composites ,Elsevier,2008 pp.224. 28 Chen D,Liu Y,Meng M,et al.D.International Journal of Mechanical Sciences ,2023,244,108083. 29 Chen D,Sun G,Meng M,et al.Thin-Walled Structures ,2019,142,516. 30 Zhang J,Qi D,Zhou L,et al.Composite Structures ,2015,133,331. 31 Shan M,Zhao L,Hong H,et al.International Journal of Fatigue ,2018,111,299. 32 Shi Y,Swait T,Soutis C.Composite Structures ,2012,94(9),2902. 33 Yang L,Yan Y,Kuang N.Polymer Testing ,2013,32(7),1163. 34 Jiang L,Xiao S,Yang B,et al.Composite Structures ,2021,270,114115. 35 Jiang L,Dong D,Xiao S,et al.International Journal of Adhesion and Adhesives ,2022,116,103154. 36 Sokolinsky V S,Indermuehle K C,Hurtado J A.Composites Part A:Applied Science and Manufacturing ,2011,42(9),1119. 37 Zhu G,Liao J,Sun G,et al.International Journal of Impact Engineering ,2020,141,103509.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Shared
Discussed