Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 23110140-8    https://doi.org/10.11896/cldb.23110140
  高分子与聚合物基复合材料 |
湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测
汪依宁, 陈东东*, 肖守讷, 王明猛, 何子坤
西南交通大学轨道交通运载系统全国重点实验室,成都 610031
Degradation Mechanisms and Performance Prediction of Carbon Fiber Reinforced Polymer Composites Subjected to Hydrothermal Aging
WANG Yining, CHEN Dongdong*, XIAO Shoune, WANG Mingmeng, HE Zikun
State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 16636KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了深入研究湿热老化环境下碳纤维增强树脂基复合材料(Carbon fiber reinforced polymers,CFRP)力学性能退化行为,开展了30 ℃和50 ℃两种水温下CFRP材料的浸水老化试验,随后进行老化0、6、12、18、24、30 d后样件的拉伸和压缩性能测试,并结合SEM分析老化前后CFRP试件破坏形貌。基于有限元软件ABAQUS二次开发功能,构建了考虑湿热老化效应的层内断裂和层间分层失效的二维本构模型,并对老化前和饱和吸水状态下CFRP力学性能进行计算。结果表明:30 ℃和50 ℃两种温度下,CFRP吸湿行为均符合菲克定律;随温度提升和老化时间的延长,CFRP力学性能呈现出下降趋势。此外,相比拉伸性能,CFRP压缩性能受湿热环境影响更大,在50 ℃老化30 d后,CFRP压缩强度和模量降幅分别为39.3%和10.8%,远高于拉伸强度和模量的降幅(8.11%和7.08%)。分析原因是CFRP浸水老化过程中,水分子扩散会导致纤维-基体界面与基体性能恶化,而CFRP压缩性能对以上变化更敏感。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪依宁
陈东东
肖守讷
王明猛
何子坤
关键词:  碳纤维增强树脂基复合材料  湿热老化  力学性能  数值模拟    
Abstract: To investigate the mechanical performance degradation mechanisms of carbon fiber reinforced polymers (CFRP) in hydrothermal environments, samples were immersed in water baths filled with distilled water at temperatures of 30 ℃ and 50 ℃, respectively. Tensile and compressive tests were performed using CFRP samples aged for 0 (unaged), 6, 12, 18, 24, and 30 days. Effects of hygrothermal aging on surface morphology and failure modes were analyzed via SEM (Scanning Electron Microscopy). A two-dimensional constitutive model, which was capable of simulating the influences of hygrothermal aging on the intralaminar cracking and interlaminar delamination, was developed utilizing the user subroutine VUMAT of the ABAQUS software. Mechanical performance calculations for CFRP composites were conducted under both pre-aging and saturated water absorption conditions. Experimental results showed that the moisture absorption behavior of CFRP composites followed Fick's law at both 30 ℃ and 50 ℃. Mechanical properties of CFRP composites showed a decrease with the temperature/aging time increasing. Moreover, compared to the tensile performance, the compressive properties of CFRP composites were more sensitive to the variation of environments. After 30 days of aging in a 50 ℃ environment, the tensile strength and modulus decreased by 8.11% and 7.08%, respectively, which was worse than the 39.3% and 10.8% reductions for the compressive strength and modulus, respectively. Deterioration of the fiber-matrix interface and the epoxy matrix caused by moisture diffusion was identified as the reason for compressive performance degradation.
Key words:  carbon fiber reinforced polymers (CFRP)    hydrothermal aging    mechanical performance    numerical simulation
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TB332  
基金资助: 国家重点研发计划(2022YFB4301202)
通讯作者:  *陈东东, 博士,西南交通大学轨道交通运载系统全国重点实验室副研究员。主要从事面向车辆结构轻量化与耐撞性方面的研究工作,研究领域包括冲击载荷下复合材料及结构失效、薄壁结构耐撞性设计和多尺度建模方法等。ccd-2021@swjtu.edu.cn   
作者简介:  汪依宁,西南交通大学轨道交通运载系统全国重点实验室硕士研究生,主要研究领域为轨道车辆轻量化与耐撞性。
引用本文:    
汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
WANG Yining, CHEN Dongdong, XIAO Shoune, WANG Mingmeng, HE Zikun. Degradation Mechanisms and Performance Prediction of Carbon Fiber Reinforced Polymer Composites Subjected to Hydrothermal Aging. Materials Reports, 2025, 39(6): 23110140-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110140  或          https://www.mater-rep.com/CN/Y2025/V39/I6/23110140
1 Xiao S,Jiang L,Jiang W,et al.Journal of Traffic and Transportation Engineering,2021,21(1),154(in Chinese).
肖守讷,江兰馨,蒋维,等.交通运输工程学报,2021,21(1),154.
2 Li M,Zhang L.China Textile Leader,2020(7),19(in Chinese).
李明高,张丽娇.纺织导报,2020(7),19.
3 Shen C H,Spring G S.Journal of Composite Materials,1976,10(1),2.
4 Scida D,Assarar M,Poilane C,et al.Composites Part B:Engineering,2013,48,51.
5 Sun P,Zhao Y,Luo Y,et al.Materials & Design,2011,32(8-9),4341.
6 Grammatikos S A,Evernden M,Mitchels J,et al.Materials & Design,2016,96,283.
7 Sugiman S,Gpzali M H,Setyawan P D.Advanced Composite Materials,2019,28(1),87.
8 Wu R,Li Y,Yu T.Acta Material Composite Sinica,2022,39(9),4406(in Chinese).
吴瑞,李岩,于涛.复合材料学报,2022,39(9),4406.
9 Wei J,Liu M,Gao J,et al.Acta Material Composite Sinica,2023,40(6),3279(in Chinese).
魏建辉,刘明,高进城,等.复合材料学报,2023,40(6),3279.
10 Cesar D S J,Ávila D O,Panzera T H,et al.Composites Part B:Engineering,2020,202,108380.
11 Leblanc J,Cavallaro P,Torres J,et al.International Journal of Lightweight Materials and Manufacture,2020,3(4),344.
12 Fiore V,Calabrese L,Di Bella G,et al.Composites Part B:Engineering,2016,93,35.
13 Ding A,Wang J,Ni A,et al.Composite Structures,2019,213,71.
14 Wang D,Sun Y,Xie K,et al.Acta Material Composite Sinica,2022,39(3),1353(in Chinese).
王登霞,孙岩,谢可勇,等.复合材料学报,2022,39(3),1353.
15 Tan W,Na J,Ren J,et al.Acta Material Composite Sinica,2022,37(4),859(in Chinese).
谭伟,那景新,任俊铭,等.复合材料学报,2020,37(4),859.
16 Attukur Nandagopal R,Gin Boay C,Narasimalu S.Composite Structures,2020,236,111876.
17 Mei J,Tan P J,Liu J,et al.Composites Part A:Applied Science and Manufacturing,2019,127,105647.
18 Gholami M,Afrasiab H,Baghestani A M,et al.Composite Structures,2021,266,113819.
19 Feng Y,Ma B,Cui R,et al.Composite Structures,2020,242,112132.
20 Fuller J,Mitchell S,Pozegic T,et al.Composites Part B:Engineering,2021,227,109388.
21 Silva L V D,Silva F W D,Tarpani J R,et al.Materials & Design,2016,110,245.
22 Wang Y,Meng Z,Zhu W,et al.Construction and Building Materials,2021,294,123538.
23 Na J,Tan W,Mu W.Journal of Traffic and Transportation Engineering,2020,20(4),134(in Chinese).
那景新,谭伟,慕文龙,等.交通运输工程学报,2020,20(4),134.
24 Li C,Guo R,Wang J,et al.Acta Materiae Compositae Sinica,2021,38(10),3290(in Chinese).
李承高,郭瑞,王俊琦,等.复合材料学报,2021,38(10),3290.
25 Sun G,Zuo W,Chen D,et al.Thin-Walled Structures,2021,164,107769.
26 Zhang Y,Wang J,Wei J,et al.Acta Materiae Compositae Sinica,2023,40(3),1406(in Chinese).
张裕恒,王继辉,魏建辉,等.复合材料学报,2023,40(3),1406.
27 Mensitieri G,Iannone M.Ageing of Composites,Elsevier,2008 pp.224.
28 Chen D,Liu Y,Meng M,et al.D.International Journal of Mechanical Sciences,2023,244,108083.
29 Chen D,Sun G,Meng M,et al.Thin-Walled Structures,2019,142,516.
30 Zhang J,Qi D,Zhou L,et al.Composite Structures,2015,133,331.
31 Shan M,Zhao L,Hong H,et al.International Journal of Fatigue,2018,111,299.
32 Shi Y,Swait T,Soutis C.Composite Structures,2012,94(9),2902.
33 Yang L,Yan Y,Kuang N.Polymer Testing,2013,32(7),1163.
34 Jiang L,Xiao S,Yang B,et al.Composite Structures,2021,270,114115.
35 Jiang L,Dong D,Xiao S,et al.International Journal of Adhesion and Adhesives,2022,116,103154.
36 Sokolinsky V S,Indermuehle K C,Hurtado J A.Composites Part A:Applied Science and Manufacturing,2011,42(9),1119.
37 Zhu G,Liao J,Sun G,et al.International Journal of Impact Engineering,2020,141,103509.
[1] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[2] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[3] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[4] 果春焕, 王磊, 邵帅齐, 王树邦, 李渐亮, 孙倩斐, 姜风春. 激光粉末床熔融金属点阵结构力学性能研究进展[J]. 材料导报, 2025, 39(6): 24040109-10.
[5] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[6] 何德健, 王振华, 刘保英, 房晓敏, 徐元清, 丁涛. 二乙基次磷酸铝和三聚氰胺衍生物协效阻燃PA6/GF复合材料[J]. 材料导报, 2025, 39(6): 24020106-8.
[7] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[8] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[9] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[10] 李雷, 孙东旭, 柴玉莹, 谢飞, 吴明. 剥离涂层下含缺陷管道腐蚀规律的瞬态数值模拟研究[J]. 材料导报, 2025, 39(5): 23010094-9.
[11] 邹家伟, 刘志超, 王发洲. 基于γ-C2S的蜂窝陶瓷常温制备与性能研究[J]. 材料导报, 2025, 39(4): 24010136-7.
[12] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[13] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[14] 丁来龙, 马明亮, 冯超, 黄微波, 王一凡, 林佳宇, 吴超. 聚脲材料的优化及抗爆抗侵彻性能研究进展[J]. 材料导报, 2025, 39(4): 24010082-9.
[15] 邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed