Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 23100236-7    https://doi.org/10.11896/cldb.23100236
  高分子与聚合物基复合材料 |
Zn掺杂ZIF-67构筑光热-相变储能一体化材料的性能研究
李辉1, 郭文尧1, 肖强强1, 王梦千1, 杜守勤2, 李国宁1, 李诗杰1, 郭敏1, 马晓玲3,*
1 山东建筑大学热能工程学院,济南 250101
2 山东泛在新能源集团股份有限公司,济南 250013
3 伯明翰大学化学工程学院,英国 伯明翰 B15 2TT
Construction and Performance of Integrated Photothermal and Phase-change Energy Storage Materials via Zn-doped ZIF-67
LI Hui1,GUO Wenyao1,XIAO Qiangqiang1,WANG Mengqian1,DU Shouqin2,LI Guoning1, LI Shijie1, GUO Min1, MA Xiaoling3,*
1 School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China
2 Shandong Fanzai Renewable Energy Group Co., Ltd., Jinan 250013, China
3 School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
下载:  全 文 ( PDF ) ( 11377KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机固-液相变材料(PCM)存在导热系数低和相变易泄漏的问题,且不具备光热转化能力,在太阳能储热领域应用受限。为此,本研究采用Zn掺杂ZIF-67调控支撑体孔道结构,采用真空熔融吸附法负载硬脂酸(SA)构筑光热相变储能一体化材料(SA/CoxT)。借助N2吸附-脱附(BET)、傅里叶红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)和拉曼光谱(Raman)进行表征,揭示CoxT对SA导热性能、定形能力和光热转化能力的影响。结果表明,CoxT能够显著提高SA导热系数,并使其具有良好的光热转化性能,且相变过程未发生泄漏。其中,SA/Co2900的储热效率可达78.69%,导热系数(0.543 W/(m·K))相较于SA提高了201.67%,光热转化效率为73.82%。SA/Co2900在相变过程未出现形貌变化和泄漏,重复循环储/放热100次后仍然具有良好的储热能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李辉
郭文尧
肖强强
王梦千
杜守勤
李国宁
李诗杰
郭敏
马晓玲
关键词:  相变储热  定形  ZIF-67  光热转化  Zn掺杂    
Abstract: Organic solid-liquid phase change materials (PCMs) suffer low thermal conductivity and phase change leakage, and most of them possess no photo-thermal conversion capability, which limits their application in the field of solar thermal storage. In this paper, Zn-doped ZIF-67 was used to modulate the pore structure of the derivatives to achieve pore expansion, and stearic acid (SA) was loaded by vacuum melt adsorption to construct integrated photothermal phase change energy storage materials (SA/CoxT). Characterization was performed with the aid of N2 adsorption-desorption, FTIR, XRD, SEM and Raman to reveal the effects of CoxT on the thermal conductivity, deformation ability and photo-thermal conversion ability of SA. The experimental results showed that with the addition of CoxT to SA, the thermal conductivity was significantly improved, the phase transition did not leak and good photo-thermal conversion performance was assembled. Among them, the thermal storage efficiency of SA/Co2900 can reach 78.69%, the thermal conductivity (0.543 W/(m·K)) is increased by 201.67% compared with SA, and the photo-thermal conversion efficiency is 73.82%. SA/Co2900 does not have any morphological change and leakage in the phase transition process, and still has good thermal storage capacity after 100 repeated cycles of heat storage/exhaustion.
Key words:  phase change thermal storage    shape stability    ZIF-67    photo-thermal conversion    Zn doping
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TK019  
基金资助: 中国博士后科学基金(2021M702017);山东省优秀青年科学基金(ZR2023YQ046);山东省博士后创新项目(202102034)
通讯作者:  *马晓玲,伯明翰大学化学工程学院助理研究员。2015年山东大学能源与动力工程学院能源与动力工程专业本科毕业,2018年山东大学能源与动力工程学院动力工程及工程热物理专业硕士毕业,2022年山东大学能源与动力工程学院动力工程及工程热物理专业博士毕业后到伯明翰大学工作至今。目前主要从事储能技术、污染物防控等方面的研究工作。x.ma.2@bham.ac.uk   
作者简介:  李辉,山东建筑大学热能工程学院副教授,硕士研究生导师。2011年山东建筑大学热能工程学院热能与动力工程专业本科毕业,2016年山东大学能源与动力工程学院动力工程及工程热物理专业博士毕业后到山东建筑大学工作至今。目前从事生物质能开发利用、催化剂可控合成与储能技术等方面的研究工作。
引用本文:    
李辉, 郭文尧, 肖强强, 王梦千, 杜守勤, 李国宁, 李诗杰, 郭敏, 马晓玲. Zn掺杂ZIF-67构筑光热-相变储能一体化材料的性能研究[J]. 材料导报, 2025, 39(6): 23100236-7.
LI Hui,GUO Wenyao,XIAO Qiangqiang,WANG Mengqian,DU Shouqin,LI Guoning, LI Shijie, GUO Min, MA Xiaoling. Construction and Performance of Integrated Photothermal and Phase-change Energy Storage Materials via Zn-doped ZIF-67. Materials Reports, 2025, 39(6): 23100236-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100236  或          https://www.mater-rep.com/CN/Y2025/V39/I6/23100236
1 Xia R Q, Zhang W Y, Yang Y N, et al. Journal of Cleaner Production, 2021, 296, 126598.
2 Chen G J, Su Y P, Jiang D Y, et al. Applied Energy, 2020, 264, 114786.
3 Xie B S, Li C C, Chen J, et al. Solar Energy, 2020, 204, 624.
4 Faraj K, Khaled M, Faraj J, et al. Renewable & Sustainable Energy Reviews, 2020, 119, 109579.
5 Zang X L, Wang X, Zhong C H, et al. Journal of Industrial and Engineering Chemistry, 2020, 85, 208.
6 Voigt I, de Sosa I N, Wermke B, et al. Applied Thermal Engineering, 2019, 155, 297.
7 Cheng X M, Li G, Yu G M, et al. Journal of Materials Science, 2017, 52(20), 12370.
8 Wu R Q, Gao W, Zhou Y H, et al. Composites Part B-Engineering, 2021, 225, 109318.
9 Chen Y F, Zhang Q, Wen X Y, et al. Solar Energy Materials and Solar Cells, 2018, 184, 82.
10 Ren W W, Cao L, Zhang D. International Journal of Energy Research, 2020, 44(1), 242.
11 Wang J C, Guo W Y, Ma X L, et al. Journal of Energy Storage, 2023, 60, 106634.
12 Li B X, Nie S B, Hao Y G, et al. Energy Conversion and Management, 2015, 98, 314.
13 Li H, Liu F S, Ma X L, et al. Energy Conversion and Management, 2019, 180, 401.
14 Guo W Y, Wang J C, Li H, et al. Acta Materiae Compositae Sinica, 2023, 40(5), 3026 (in Chinese).
郭文尧, 王骏驰, 李辉, 等. 复合材料学报, 2023, 40(5), 3026.
15 Li H, Liu F S, Ma X L, et al. Renewable Energy, 2020, 149, 816.
16 Atinafu D G, Dong W J, Hou C M, et al. Materials Today Energy, 2019, 12, 239.
17 Delfani S, Karami M, Akhavan-Behabadi M A. Renewable Energy, 2016, 87, 754.
18 Tang J, Salknuhe R R, Liu J, et al. Journal of the American Chemical Society, 2015, 137(4), 1572.
19 Atinafu D G, Dong W J, Huang X B, et al. Applied Energy, 2018, 211, 1203.
20 Pettes M T, Ji H X, Ruoff R S, et al. Nano Letters, 2012, 12(6), 2959.
21 Li G N, Zheng K T, Xu C J. Applied Surface Science, 2019, 487, 496.
22 Goud M V, Sudhakar R D. Journal of Energy Storage, 2022, 48, 103992.
23 Yang H Y, Chao W X, Di X, et al. Energy Conversion and Management, 2019, 200, 112029.
24 Mehrali M, Latibari S T, Mehrali M, et al. Energy Conversion and Ma-nagement, 2013, 67, 275.
25 Zhang X L, Lin Q L, Luo H J, et al. Applied Energy, 2020, 260, 114278.
26 Yuan Y P, Zhang N, Li T Y, et al. Energy, 2016, 97, 488.
27 Chen X, Gao H Y, Xing L W, et al. Energy Storage Materials, 2019, 18, 280.
28 Qian T T, Zhu S K, Wang H L, et al. ACS Sustainable Chemistry & Engineering, 2018, 7(2), 2446.
29 Yang H Z, Bai Y F, Ge C H, et al. ACS Applied Polymer Materials, 2021, 3(7), 3321.
30 Li M, Wang C C. Renewable Energy, 2019, 141, 1005.
31 Zhang L Z, Su Z X, Jiang F L, et al. Nanoscale, 2014, 6(12), 6590.
32 Li G N, Zhang J J, Li W S, et al. Nanoscale, 2018, 10(19), 9252.
33 Luan Y, Yang M, Ma Q Q, et al. Journal of Materials Chemistry A, 2016, 4(20), 7641.
34 Qian T T, Li J H, Min X, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(1), 897.
35 Jafaripour M, Sadrameli S M, Pahlavanzadeh H, et al. Journal of Energy Storage, 2021, 33, 102155.
36 Wei H T, Xie X Z, Li X Q, et al. Applied Energy, 2016, 178, 616.
37 Wang X, Zhong W, Li Y W. Catalysis Science & Technology, 2015, 5(2), 1014.
38 Umair M M, Zhang Y, Iqbal K, et al. Applied Energy, 2019, 235, 846.
39 Wang L, Wang Z H, Xie L L, et al. ACS Applied Materials & Interfaces, 2019, 11(18), 16619.
40 Zhang T, Zhang T D, Zhang J, et al. Renewable Energy, 2021, 165, 504.
41 Advincula P A, de Leon A C, Rodier B J, et al. Journal of Materials Chemistry A, 2018, 6(6), 2461.
42 Liu T, Zhang L Y, You W, et al. Small, 2018, 14(12), 1702407.
43 Wang W, Jing W L, Wang F X, et al. Journal of Power Sources, 2018, 399, 357.
[1] 孙启萌, 孙淼, 祁艳菲, 金国庆, 周兴海, 吕丽华, 魏春艳, 高原. 三维光热蒸发器结构设计理念研究进展[J]. 材料导报, 2024, 38(14): 23030100-9.
[2] 方桂花, 赵茂森, 孙鹏博. 基于棕榈酸-硬脂酸/膨胀石墨定形复合相变储能材料的制备与表征[J]. 材料导报, 2023, 37(20): 22030005-7.
[3] 宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
[4] 常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[5] 王渊源, 阎鑫, 艾涛, 周鑫, 余康, 牛艳辉. 碳化三聚氰胺泡沫负载ZIF-67活化过硫酸氢钾降解罗丹明B[J]. 材料导报, 2022, 36(17): 21040213-7.
[6] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193.
[7] 赵光伟, 陈健, 丁翀, 方东, 叶永盛, 叶喜葱. 冷速与凝固路径对Al-Cu-Si合金相变储热性能的影响[J]. 材料导报, 2020, 34(Z1): 328-333.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed