Construction and Performance of Integrated Photothermal and Phase-change Energy Storage Materials via Zn-doped ZIF-67
LI Hui1,GUO Wenyao1,XIAO Qiangqiang1,WANG Mengqian1,DU Shouqin2,LI Guoning1, LI Shijie1, GUO Min1, MA Xiaoling3,*
1 School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China 2 Shandong Fanzai Renewable Energy Group Co., Ltd., Jinan 250013, China 3 School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
Abstract: Organic solid-liquid phase change materials (PCMs) suffer low thermal conductivity and phase change leakage, and most of them possess no photo-thermal conversion capability, which limits their application in the field of solar thermal storage. In this paper, Zn-doped ZIF-67 was used to modulate the pore structure of the derivatives to achieve pore expansion, and stearic acid (SA) was loaded by vacuum melt adsorption to construct integrated photothermal phase change energy storage materials (SA/CoxT). Characterization was performed with the aid of N2 adsorption-desorption, FTIR, XRD, SEM and Raman to reveal the effects of CoxT on the thermal conductivity, deformation ability and photo-thermal conversion ability of SA. The experimental results showed that with the addition of CoxT to SA, the thermal conductivity was significantly improved, the phase transition did not leak and good photo-thermal conversion performance was assembled. Among them, the thermal storage efficiency of SA/Co2900 can reach 78.69%, the thermal conductivity (0.543 W/(m·K)) is increased by 201.67% compared with SA, and the photo-thermal conversion efficiency is 73.82%. SA/Co2900 does not have any morphological change and leakage in the phase transition process, and still has good thermal storage capacity after 100 repeated cycles of heat storage/exhaustion.
1 Xia R Q, Zhang W Y, Yang Y N, et al. Journal of Cleaner Production, 2021, 296, 126598. 2 Chen G J, Su Y P, Jiang D Y, et al. Applied Energy, 2020, 264, 114786. 3 Xie B S, Li C C, Chen J, et al. Solar Energy, 2020, 204, 624. 4 Faraj K, Khaled M, Faraj J, et al. Renewable & Sustainable Energy Reviews, 2020, 119, 109579. 5 Zang X L, Wang X, Zhong C H, et al. Journal of Industrial and Engineering Chemistry, 2020, 85, 208. 6 Voigt I, de Sosa I N, Wermke B, et al. Applied Thermal Engineering, 2019, 155, 297. 7 Cheng X M, Li G, Yu G M, et al. Journal of Materials Science, 2017, 52(20), 12370. 8 Wu R Q, Gao W, Zhou Y H, et al. Composites Part B-Engineering, 2021, 225, 109318. 9 Chen Y F, Zhang Q, Wen X Y, et al. Solar Energy Materials and Solar Cells, 2018, 184, 82. 10 Ren W W, Cao L, Zhang D. International Journal of Energy Research, 2020, 44(1), 242. 11 Wang J C, Guo W Y, Ma X L, et al. Journal of Energy Storage, 2023, 60, 106634. 12 Li B X, Nie S B, Hao Y G, et al. Energy Conversion and Management, 2015, 98, 314. 13 Li H, Liu F S, Ma X L, et al. Energy Conversion and Management, 2019, 180, 401. 14 Guo W Y, Wang J C, Li H, et al. Acta Materiae Compositae Sinica, 2023, 40(5), 3026 (in Chinese). 郭文尧, 王骏驰, 李辉, 等. 复合材料学报, 2023, 40(5), 3026. 15 Li H, Liu F S, Ma X L, et al. Renewable Energy, 2020, 149, 816. 16 Atinafu D G, Dong W J, Hou C M, et al. Materials Today Energy, 2019, 12, 239. 17 Delfani S, Karami M, Akhavan-Behabadi M A. Renewable Energy, 2016, 87, 754. 18 Tang J, Salknuhe R R, Liu J, et al. Journal of the American Chemical Society, 2015, 137(4), 1572. 19 Atinafu D G, Dong W J, Huang X B, et al. Applied Energy, 2018, 211, 1203. 20 Pettes M T, Ji H X, Ruoff R S, et al. Nano Letters, 2012, 12(6), 2959. 21 Li G N, Zheng K T, Xu C J. Applied Surface Science, 2019, 487, 496. 22 Goud M V, Sudhakar R D. Journal of Energy Storage, 2022, 48, 103992. 23 Yang H Y, Chao W X, Di X, et al. Energy Conversion and Management, 2019, 200, 112029. 24 Mehrali M, Latibari S T, Mehrali M, et al. Energy Conversion and Ma-nagement, 2013, 67, 275. 25 Zhang X L, Lin Q L, Luo H J, et al. Applied Energy, 2020, 260, 114278. 26 Yuan Y P, Zhang N, Li T Y, et al. Energy, 2016, 97, 488. 27 Chen X, Gao H Y, Xing L W, et al. Energy Storage Materials, 2019, 18, 280. 28 Qian T T, Zhu S K, Wang H L, et al. ACS Sustainable Chemistry & Engineering, 2018, 7(2), 2446. 29 Yang H Z, Bai Y F, Ge C H, et al. ACS Applied Polymer Materials, 2021, 3(7), 3321. 30 Li M, Wang C C. Renewable Energy, 2019, 141, 1005. 31 Zhang L Z, Su Z X, Jiang F L, et al. Nanoscale, 2014, 6(12), 6590. 32 Li G N, Zhang J J, Li W S, et al. Nanoscale, 2018, 10(19), 9252. 33 Luan Y, Yang M, Ma Q Q, et al. Journal of Materials Chemistry A, 2016, 4(20), 7641. 34 Qian T T, Li J H, Min X, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(1), 897. 35 Jafaripour M, Sadrameli S M, Pahlavanzadeh H, et al. Journal of Energy Storage, 2021, 33, 102155. 36 Wei H T, Xie X Z, Li X Q, et al. Applied Energy, 2016, 178, 616. 37 Wang X, Zhong W, Li Y W. Catalysis Science & Technology, 2015, 5(2), 1014. 38 Umair M M, Zhang Y, Iqbal K, et al. Applied Energy, 2019, 235, 846. 39 Wang L, Wang Z H, Xie L L, et al. ACS Applied Materials & Interfaces, 2019, 11(18), 16619. 40 Zhang T, Zhang T D, Zhang J, et al. Renewable Energy, 2021, 165, 504. 41 Advincula P A, de Leon A C, Rodier B J, et al. Journal of Materials Chemistry A, 2018, 6(6), 2461. 42 Liu T, Zhang L Y, You W, et al. Small, 2018, 14(12), 1702407. 43 Wang W, Jing W L, Wang F X, et al. Journal of Power Sources, 2018, 399, 357.