Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22030005-7    https://doi.org/10.11896/cldb.22030005
  高分子与聚合物基复合材料 |
基于棕榈酸-硬脂酸/膨胀石墨定形复合相变储能材料的制备与表征
方桂花*, 赵茂森, 孙鹏博
内蒙古科技大学机械工程学院,内蒙古 包头 014010
Preparation and Characterization of a Shape-Stabilized Composite Phase Change Material Based on Palmitic-Stearic Acid/Expanded Graphite for Energy Storage
FANG Guihua*, ZHAO Maosen, SUN Pengbo
College of Mechanical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 20008KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以棕榈酸(PA)和硬脂酸(SA)共晶混合物为相变材料(PCM)、膨胀石墨(EG)为支撑材料,采用熔融共混法制备了新型定形PCM,并研究了其微观结构和热性能。复合PCM中PA-SA二元共晶混合物与EG的最佳吸附质量比为8∶1,PA-SA均匀分布在EG孔隙中,PCM在熔融状态下不发生泄漏。实验表明,复合PCM的最佳堆积密度为800 kg/m3,且热导率与堆积密度成正比。DSC结果表明,复合PCM具有适宜的相变温度(Tm: 54.34 ℃,Tf: 54.02 ℃)和较高的潜热(ΔHm: 163.19 J/g,ΔHf: 161.65 J/g)。蓄放热循环与TGA结果表明,复合PCM在1 000次热循环后仍保持优异的热循环稳定性,在低温储能领域有着广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方桂花
赵茂森
孙鹏博
关键词:  定形相变材料  硬脂酸  棕榈酸  膨胀石墨  热性能    
Abstract: In this study, a new type of shape-stabilized phase change material (PCM), which is suitable for solar energy storage, was prepared using eutectic mixture of palmitic acid (PA) and stearic acid (SA) as the phase transition material and expanded graphite (EG) as the supporting material. The microstructural and thermal properties of the novel PCM are examined through different techniques. The optimum adsorption mass ratio of PA-SA and EG in composite was obtained as 8∶1, and the best stacking density was 800 kg/m3. And the thermal conductivity is proportional to the packing density. The PA-SA binary eutectic mixture is uniformly distributed in the honeycomb void structure of EG without any chemical reaction, and PCM does not leak even in the molten state. The DSC results reveal that the new composite has an excellent phase transition temperature (Tm: 54.34 ℃, Tf: 54.02 ℃) and a high latent heat (ΔHm: 163.19 J/g,ΔHf:161.65 J/g).The results of thermal cycling and TGA show that the composite PCM still maintains excellent thermal stability and reliability after 1 000 thermal cycles, and has a broad application prospect in the field of low-temperature energy storage.
Key words:  composite phase change material    palmitic acid    stearic acid    expanded graphite    thermal property
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TB34  
基金资助: 内蒙自治区科技创新引导奖励资金项目(KCBJ2018031;2017CXYD-2)
通讯作者:  *方桂花,内蒙古科技大学机械工程学院教授、硕士研究生导师。1985年于内蒙古工业大学机械工程学院本科毕业,1987年于沈阳工业大学机械制造专业硕士毕业。目前主要从事基于智能控制的液压系统研究与开发、液压控制系统的在线故障诊断以及可再生能源存储与利用。发表科研论文60余篇,包括Energy & FuelsSolar Energy Materials and Solar CellsApplied Mechanics and Materials等。fangguihua@imust.edu.cn   
引用本文:    
方桂花, 赵茂森, 孙鹏博. 基于棕榈酸-硬脂酸/膨胀石墨定形复合相变储能材料的制备与表征[J]. 材料导报, 2023, 37(20): 22030005-7.
FANG Guihua, ZHAO Maosen, SUN Pengbo. Preparation and Characterization of a Shape-Stabilized Composite Phase Change Material Based on Palmitic-Stearic Acid/Expanded Graphite for Energy Storage. Materials Reports, 2023, 37(20): 22030005-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030005  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22030005
1 Li T, Wu M, Wu S, et al. Nano Energy, 2021, 89, 106338.
2 Miao Y, Li L P, Qu M J, et al. Materials Reports, 2017, 31(S2), 233.
苗扬, 李丽萍, 曲美洁, 等. 材料导报, 2017, 31(S2), 233.
3 Guo F, Zhang J Y, Tian Y, et al. Acta Energiae Solaris Sinica, 2020, 41(9), 219.
郭放, 张俊月, 田原, 等. 太阳能学报, 2020, 41(9), 219.
4 Zahir M H, Rahman M M, Irshad K, et al. Nanomaterials, 2019, 9(12), 1173.
5 Khan Z, Khan Z, Ghafoor A. Energy Conversion & Management, 2016, 115(5), 132.
6 Gu Q J, Fei H, Wang L Y, et al. Chemical Industry and Engineering Progress, 2019, 38(6), 2825.
顾庆军, 费华, 王林雅, 等. 化工进展, 2019, 38(6), 2825.
7 Ma L, Guo C, Ou R, et al. Energy & Fuels, 2018, 32(4), 5453.
8 Zhou T T, Xiong Z B, Wu Z G, et al. Chemical Industry and Engineering Progress, 2022, 41(2), 892.
周涛涛, 熊志波, 吴志根, 等. 化工进展, 2022, 41(2), 892.
9 Rathod M K, Banerjee J. Renewable & Sustainable Energy Reviews, 2013, 18, 246.
10 San A. Energy Conversion & Management, 2003, 44(14), 2277.
11 Gallart-Sirvent P, Martín M, Villorbina G, et al. RSC Advances, 2017, 7(39), 24133.
12 Fazilati M A, Alemrajabi A A. Energy Conversion and Management, 2013, 71, 138.
13 Singh P, Sharma R K, An Su A K, et al. Solar Energy Materials and Solar Cells, 2021, 223, 110955.
14 Jiang Z P, Tie S N. Materials Reports, 2016, 30(12), 55.
蒋自鹏, 铁生年. 材料导报, 2016, 30(12), 55.
15 Ma Z, Lin W, Sohel M I. Renewable and Sustainable Energy Reviews, 2016, 58, 1256.
16 Kim D, Jung J, Kim Y, et al. International Journal of Heat & Mass Transfer, 2016, 95, 735.
17 Rathore P, Shukla S K. Renewable Energy, 2021, 176, 295.
18 Zhang Z, Zhang N, Peng J, et al. Applied Energy, 2012, 91(1), 426.
19 Fang G, Yu M, Meng K, et al. Energy & Fuels, 2020, 34(8), 10109.
20 Yuan Y, Tao W, Cao X, et al. Journal of Chemical & Engineering Data, 2011, 56(6), 2889.
21 Yu H, Gao J, Chen Y, et al. Journal of Thermal Analysis & Calorimetry, 2016, 124(1), 87.
22 Zhang N, Yuan Y, Du Y, et al. Energy, 2014, 78, 950.
23 Karaipekli A, Sar A, Kaygusuz K. Renewable Energy, 2007, 32(13), 2201.
24 Min L, Kao H, Wu Z, et al. Applied Energy, 2011, 88(5), 1606.
25 Sobolciak P, Mrlik M, AlMaadeed M A, et al. Thermochimica Acta, 2015, 617, 111.
26 Gallart-Sirvent P, M Martín, Villorbina G, et al. RSC Advances, 2017, 7(39), 24133.
27 Fei H, Du W, Gu Q, et al. Energy & Fuels, 2020, 34(11), 14893.
28 Zhou D, ZhouY, Yuan J, et al. Journal of Nanomaterials, 2020, 2020, 1.
[1] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[2] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[3] 张文雅, 周健, 李辉, 徐名凤. 轻质玄武岩纤维高延性水泥基复合材料研制及导热性能研究[J]. 材料导报, 2023, 37(20): 22040279-6.
[4] 吕婉毓, 郭乃胜, 褚召阳, 房辰泽. 水性丙烯酸基道路标线涂料的制备与性能研究[J]. 材料导报, 2023, 37(18): 22040043-7.
[5] 宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
[6] 宋承哲, 张冠华, 屈丰来, 冯良勇. 热塑性聚氨酯改性环氧树脂的制备与微观特性表征[J]. 材料导报, 2023, 37(10): 21060009-7.
[7] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[8] 蔡中盼, 田茂诚, 张冠敏. 不同层数和尺寸的石墨烯对润滑油热物性能的影响[J]. 材料导报, 2022, 36(3): 20100213-8.
[9] 陈营, 魏燕红, 陈德平, 周红梅. 支化度对TAP-BFDA聚酰亚胺的性能影响研究[J]. 材料导报, 2022, 36(23): 21030027-5.
[10] 邢悦, 井致远, 陈永雄, 任素娥, 梁秀兵. 航空航天用气凝胶材料的研究进展[J]. 材料导报, 2022, 36(22): 22010024-15.
[11] 董桂伟, 赵国群, 丁汪洋, 王桂龙, 张磊. 基于多阶压力控制的双峰泡孔聚合物发泡行为及性能[J]. 材料导报, 2022, 36(2): 20050168-5.
[12] 岳世伟, 逄显娟, 牛一旭, 黄素玲. 载荷和速度对聚醚醚酮(PEEK)复合材料摩擦性能的影响[J]. 材料导报, 2022, 36(16): 21040271-7.
[13] 蒋自鹏, 张雨, 铁健, 铁生年. 一步法氧化改性纳米碳增强芒硝基复合相变材料热性能[J]. 材料导报, 2022, 36(12): 21030077-6.
[14] 贾琨, 王喆, 王蓬, 王东红, 马晨, 刘伟. 导热吸波材料的研究进展及未来发展方向[J]. 材料导报, 2021, 35(9): 9133-9139.
[15] 汤琦, 颜桐桐, 孙豪, 王小蕾, 王春芙, 宗成中. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6): 6206-6211.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed