Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21030027-5    https://doi.org/10.11896/cldb.21030027
  高分子与聚合物基复合材料 |
支化度对TAP-BFDA聚酰亚胺的性能影响研究
陈营*, 魏燕红, 陈德平, 周红梅
成都工业学院材料与环境工程学院,成都 610031
Effect of Degree of Branching on Performance of TAP-BFDA Polyimides
CHEN Ying*, WEI Yanhong, CHEN Deping, ZHOU Hongmei
School of Materials and Environmental Engineering,Chengdu Technological University,Chengdu 610031,China
下载:  全 文 ( PDF ) ( 3672KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过在高分子链中引入超支化结构来改善芳香族聚酰亚胺的加工性能,而不损害它们的热性能,合成了超支化聚酰亚胺。这类聚合物同时具有超支化和酰亚胺结构,使得自身具有两者的综合性能,因而在航空、航天、微电子等领域具有广阔的应用前景。然而,不同支化度对超支化聚酰亚胺结构与性能的影响鲜有报道。鉴于此,本研究以TAP为三胺单体、BFDA为二酐单体,两种单体采用七种不同的物质的量比1∶1、1∶1.2、1∶1.4、1∶1.5、1∶1.6、1∶1.8、1∶2,通过“二步法”制得了七种超支化聚酰亚胺。利用核磁氢谱分析对聚合物的支化度进行了计算,七种聚酰亚胺的支化度分别为27%、36%、51%、60%、65%、69%和74%。结果表明:随着支化度的提高,产物结晶构造的晶格间距(d-spacing )增大,数均分子量和特性粘度大致呈现为先升高后略有降低的变化趋势;所得超支化聚酰亚胺具有优异的溶解性能和较好的热性能,并且随着支化度的提高,溶解性能提高,玻璃化转变温度(Tg)降低,5%热失重温度升高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈营
魏燕红
陈德平
周红梅
关键词:  聚酰亚胺  支化度  溶解性  热性能    
Abstract: Hyperbranchede polyimide improves the processability of aromatic polyimide by introducing hyperbranched structures into polymer chains,while maintaining their thermal properties;therefore,it has been widely used in the fields of aeronautics,astronautics and microelectronics. However,the effects of different degree of branching on the properties of hyperbranched polyimide have rarely been reported. In view of this,seven kinds of hyperbranched polyimides were synthesized based on TAP astriamine monomer and BFDA as dianhydride monomer,with the molar ratios of TAP ∶BFDA being 1∶1,1∶1.2,1∶1.4,1∶1.5,1∶1.6,1∶1.8,1∶2.The DB of the obtained polyimides indicated by 1H NMR was 27%,36%,51%,60%,65%,69% and 74%. Results show that with DB increasing,the d-spacing values increase,while the Mn and inherent viscosities firstly increase then slightly decrease. All of the products exhibite good solubility. With DB increasing,the solubility increases. All of the obtained polyimides show good thermal properties. With DB increasing,Tg decreases,while 5% weight loss temperatures increases.
Key words:  polyimides    degree of branching    solubility    thermal property
发布日期:  2022-12-09
ZTFLH:  O63  
基金资助: 四川省科技计划项目(2019YJ0376)
通讯作者:  *chy043151@163.com   
作者简介:  陈营,成都工业学院副教授。2008年毕业于西北工业大学高分子材料与工程专业,获工学学士学位;2013年毕业于西北工业大学高分子化学与物理专业,获理学博士学位;2014—2016年在电子科技大学材料学专业开展博士后研究。目前主要从事聚酰亚胺改性与加工方向的研究工作。发表论文20余篇,包括Journal of Membrane Science、 High Performance Polymers、ACS Applied Materials & Interfaces、Polymer International等。
引用本文:    
陈营, 魏燕红, 陈德平, 周红梅. 支化度对TAP-BFDA聚酰亚胺的性能影响研究[J]. 材料导报, 2022, 36(23): 21030027-5.
CHEN Ying, WEI Yanhong, CHEN Deping, ZHOU Hongmei. Effect of Degree of Branching on Performance of TAP-BFDA Polyimides. Materials Reports, 2022, 36(23): 21030027-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030027  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21030027
1 Genies C,Régis M,Sillion B,et al. Polymer,2011,42(2),359.
2 Fei Z F,Li K F,Yang Z C,et al. Materials Reports B:Research Papers,2018,32(10),5 (in Chinese).
费志方,李昆锋,杨自春,等. 材料导报:研究篇,2018,32(10),5.
3 Song Z,Zhan H,Zhou Y. Angewandte Chemie International Edition,2010,49(45),8444.
4 Herzberger J,Meenakshisundaram V,Williams C B,et al. ACS Macro Letters,2018,7(4),493.
5 Lederer A,Burchard W. Advances in Polymer Science,2015,143(3),555.
6 Hölter D,Burgath A,Frey H. Acta Polymerica,2010,48,30.
7 Chang H T,Fréchet R J,Jean M J. Journal of the American Chemical Society,2016,121(10),2313.
8 Gao C,Yan D. Progress in Polymer Science,2004,29(3),183.
9 Kim Y H. Journal of Polymer Science Part A Polymer Chemistry,2015,36(11),1685.
10 Chen Y,Huang R,Zhang Q,et al. High Performance Polymers,2017,29(1),68.
11 Petr S,Anna P,Marek L,et al. European Polymers,2018,18(2),105.
12 Othman M B H,Akil H M,Osman H,et al. Journal of Thermal Analysis and Calorimetry,2015,120(3),1785.
13 Chen Y,Zhou H M,Chen D P,et al. Materials Reports A:Review Papers,2019,33(1),4 (in Chinese).
陈营,周红梅,陈德平,等. 材料导报:综述篇,2019,33(1),4.
14 Chen Y,Wei Y H,Chen D P,et al. China Plastics Industry,2021,49(9),5 (in Chinese).
陈营,魏燕红,陈德平,等. 塑料工业,2021,49(9),5.
15 Fang J,Kita H,Okamoto K. Macromolecules,2000,33(13),4639.
16 Hawthorne D G,Hodgkin J H. High Performance Polymers,1999,11(3),315.
17 Al-Masri M,Kricheldorf H R,Fritsch D. Macromolecules,2016,32(23),7853.
18 Yoshino M,Ito K,Kita H,et al. Journal of Polymer Science Part B Polymer Physics,2015,38(13),1707.
19 Rodenas T,Luz I,Prieto G,et al. Nature Materials,2015,14(1),48.
20 Chen Y,Zhang Q,Sun W,et al. Journal of Membrane Science,2014,450,138.
21 Markoski L J,Moore J S,Sendijarevic I,et al. Macromolecules,2001,34(8),2695.
22 Wooley K L,Hawker C J,Pochan J M,et al. Macromolecules,1993,26(7),1514.
[1] 蔡中盼, 田茂诚, 张冠敏. 不同层数和尺寸的石墨烯对润滑油热物性能的影响[J]. 材料导报, 2022, 36(3): 20100213-8.
[2] 曹晶晶, 张玉迪, 邓玉媛, 徐新宇. 不同尺寸的碳纳米管接枝聚酰亚胺复合材料的分子动力学模拟[J]. 材料导报, 2022, 36(23): 21060264-5.
[3] 邢悦, 井致远, 陈永雄, 任素娥, 梁秀兵. 航空航天用气凝胶材料的研究进展[J]. 材料导报, 2022, 36(22): 22010024-15.
[4] 孙承月, 郭鑫鑫, 吴忧, 曹争利, 王豪, 琚丹丹, 王岩, 吴宜勇. 聚酰亚胺气凝胶材料的电子/紫外辐照效应及机理分析[J]. 材料导报, 2022, 36(22): 22040378-8.
[5] 雷尧飞, 沈宇新, 艾素芬, 董薇, 陈浩, 张鹏飞, 刘佳. 聚酰亚胺气凝胶及其薄型复合材料的制备和性能研究[J]. 材料导报, 2022, 36(22): 22040282-4.
[6] 王楠, 白晶莹, 李家峰, 冯立, 徐俊杰, 赫艳龙, 董俊伟, 崔庆新, 张立功. 聚酰亚胺薄膜表面导电金属层化学沉积技术研究[J]. 材料导报, 2022, 36(22): 22030280-6.
[7] 杨传超, 徐鸿杰, 田国峰, 张静静, 高鸿, 卓航, 张梦颖, 战佳宇, 武德珍. 高强高模聚酰亚胺纤维的空间环境适应性研究及在航天领域的应用前景分析[J]. 材料导报, 2022, 36(22): 22040361-5.
[8] 董桂伟, 赵国群, 丁汪洋, 王桂龙, 张磊. 基于多阶压力控制的双峰泡孔聚合物发泡行为及性能[J]. 材料导报, 2022, 36(2): 20050168-5.
[9] 朋小康, 黄兴文, 刘荣涛, 张永文, 张诗洋, 黄锦涛, 闵永刚. 光敏聚酰亚胺:低温固化设计策略[J]. 材料导报, 2022, 36(19): 21030016-9.
[10] 邓凯文, 牛荣军, 孙小波, 郭军力, 邓四二. 石墨烯改性多孔聚酰亚胺轴承保持架材料性能研究[J]. 材料导报, 2022, 36(17): 21030176-5.
[11] 岳世伟, 逄显娟, 牛一旭, 黄素玲. 载荷和速度对聚醚醚酮(PEEK)复合材料摩擦性能的影响[J]. 材料导报, 2022, 36(16): 21040271-7.
[12] 蒋自鹏, 张雨, 铁健, 铁生年. 一步法氧化改性纳米碳增强芒硝基复合相变材料热性能[J]. 材料导报, 2022, 36(12): 21030077-6.
[13] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[14] 贾琨, 王喆, 王蓬, 王东红, 马晨, 刘伟. 导热吸波材料的研究进展及未来发展方向[J]. 材料导报, 2021, 35(9): 9133-9139.
[15] 汤琦, 颜桐桐, 孙豪, 王小蕾, 王春芙, 宗成中. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6): 6206-6211.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed