Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20050168-5    https://doi.org/10.11896/cldb.20050168
  高分子与聚合物基复合材料 |
基于多阶压力控制的双峰泡孔聚合物发泡行为及性能
董桂伟1,2, 赵国群1, 丁汪洋1, 王桂龙1, 张磊1
1 山东大学材料液固结构演变与加工教育部重点实验室,济南 250061
2 四川大学高分子材料工程国家重点实验室,成都 610065
Foaming Behavior and Properties of Bimodal Cellular Polymer Based on Multi-step Pressure Control
DONG Guiwei1,2, ZHAO Guoqun1, DING Wangyang1, WANG Guilong1, ZHANG Lei1
1 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061, China
2 State Key Laboratory of Polymer Materials Engineering,Sichuan University, Chengdu 610065, China
下载:  全 文 ( PDF ) ( 10972KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 双峰泡孔聚合物材料是聚合物泡沫的一种特殊结构类型材料,近年来受到了业界的广泛研究和关注。在超临界流体辅助间歇发泡工艺中,发泡体系的压力控制是诱导双峰泡孔形核和长大的关键因素。基于此,本研究构建了一种多阶压力控制聚合物间歇发泡系统,制备了具有典型双峰泡孔结构的聚苯乙烯泡沫材料,研究了不同一阶压降、一阶压降保压时间、二阶压降等工艺参数对聚合物发泡行为的影响以及所制备材料的隔热性能。结果表明,在饱和温度为90 ℃及以上时,一阶压降3 MPa和8 MPa条件下均能形成良好的双峰泡孔结构;饱和温度的升高、一阶压降保压时间的延长可以促进大泡孔的生长,而对小泡孔无明显影响;双峰泡孔聚苯乙烯泡沫材料具有良好的隔热性能,对于所制备的最大发泡倍率为47.27的泡沫材料,其热导率仅为72 mW/(m·K)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董桂伟
赵国群
丁汪洋
王桂龙
张磊
关键词:  多阶压力控制  双峰泡孔聚合物  发泡行为  隔热性能    
Abstract: Bimodal cellular polymer foam is a special structural material in polymer foam materials. It has been widely studied and concerned in recent years. In supercritical fluid assisted batch foaming process, the pressure control of foaming system is the key factor to induce the nucleation and growth of bimodal cellular foam. Based on this, a multi-step pressure control polymer batch foaming system was constructed. The polystyrene foam with typical bimodal foam structure was prepared. The effects of different first step pressure drop, holding time of first step pressure drop and second step pressure drop on the foaming behavior of the polymer, and the thermal insulation properties of the prepared material were studied. The results show that when the saturation temperature is above 90 ℃ and the first step pressure drop is 3 MPa and 8 MPa, a good bimo-dal cell structure can be formed. The increase of saturation temperature and holding time of first step pressure drop can promote the growth of big cells, but have no effect on the growth of small cells. The foamed polystyrene foam with bimodal cellular structure has good thermal insulation properties, and the thermal conductivity of the foamed material with a maximum foaming rate of 47.27 is only 72 mW/(m·K).
Key words:  multi-step pressure control    bimodal cellular polymer    foaming behaviour    thermal insulation property
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TQ328.4  
基金资助: 山东省自然科学基金面上项目(ZR2020ME148);高分子材料工程国家重点实验室开放课题(sklpme2021-05-01)
通讯作者:  zhaogq@sdu.edu.cn20050168-1   
作者简介:  董桂伟,2015年12月毕业于山东大学,获得工学博士学位。现任山东大学高级工程师,主要从事聚合物材料成型、微孔注塑以及微孔发泡塑料领域的研究。赵国群,山东大学教授,博士研究生导师,教育部“长江学者”特聘教授、国家杰出青年科学基金获得者。主要研究领域为塑性成形理论与数值模拟方法、塑性成形工艺与模具技术。
引用本文:    
董桂伟, 赵国群, 丁汪洋, 王桂龙, 张磊. 基于多阶压力控制的双峰泡孔聚合物发泡行为及性能[J]. 材料导报, 2022, 36(2): 20050168-5.
DONG Guiwei, ZHAO Guoqun, DING Wangyang, WANG Guilong, ZHANG Lei. Foaming Behavior and Properties of Bimodal Cellular Polymer Based on Multi-step Pressure Control. Materials Reports, 2022, 36(2): 20050168-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050168  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20050168
1 Notario B, Pinto J, Rodriguez-perez M. Polymer, 2015, 63, 116.
2 Chen Z, Zhang Z Z, Cong Z H, et al. Journal of Materials Engineering, 2020, 48(3), 1 (in Chinese).
陈振, 张增志, 丛中卉, 等. 材料工程, 2020, 48(3), 1.
3 Wu Z A, Zheng X P, Gong L W, et al. Materials Reports B:Research Papers, 2020, 34(4), 8200 (in Chinese).
吴志昂, 郑晓平, 龚莉雯, 等. 材料导报:研究篇, 2020, 34(4),8200.
4 Gong P J, Wang G L, Tran M P, et al. Carbon, 2017, 120, 1.
5 Liu W, Pang Y Y, Wu M H, et al. Chinese Polymer Bulletin, 2018(3), 12 (in Chinese).
刘伟, 庞永艳, 吴明辉, 等. 高分子通报, 2018(3),12.
6 Wang K, Pang Y Y, Wu F, et al. The Journal of Supercritical Fluids, 2016, 110, 65.
7 Zhang C L, Zhu B, Li D C, et al. Polymer, 2012,53, 2435.
8 Arora K A, Lesser A J, Mccarthy T J. Macromolecules, 1998, 31, 4614.
9 Bao J B, Liu T, Zhao L, et al. The Journal of Supercritical Fluids, 2011, 55, 1104.
10 Xu L Q, Huang H X. The Journal of Supercritical Fluids, 2016, 109, 177.
11 Jacobs L J M, Hurkens S A M, Kemmere M F, et al. Macromolecular Materials and Engineering, 2008, 293, 298.
12 Konigslow K V, Park C B, Thompson R B. Physical Review Applied, 2017, 8, 1.
13 Wang L, Hikima Y, Oshima M, et al. RSC Advances, 2018, 8, 15405.
14 Huang J N, Jing X, Geng L H, et al. The Journal of Supercritical Fluids, 2015, 103, 28.
15 Wang Z J, Qu Z J, Chen P, et al. China Plastics Industry, 2016, 44(10), 104 (in Chinese).
王占嘉, 屈中杰, 陈鹏, 等. 塑料工业, 2016, 44(10), 104.
16 Hou J J, Zhao G Q, Wang G L, et al. The Journal of Supercritical Fluids, 2019, 145, 140.
[1] 郭建业, 赵英民, 吴朝军, 李文静, 杨洁颖, 张丽娟, 苏力军. 温度对石英纤维毡隔热性能的影响[J]. 材料导报, 2020, 34(24): 24019-24022.
[2] 张倩, 郑振荣, 赵晓明, 毛科铸, 罗丽娟. 高温下涂层织物传热过程的数值模拟[J]. 材料导报, 2020, 34(16): 16167-16171.
[3] 郑晓平, 王璠, 吴志昂, 龚莉雯, 包锦标, 王市伟. 聚甲基丙烯酸甲酯纳米发泡材料的制备:胶束尺寸对发泡行为的影响[J]. 材料导报, 2019, 33(4): 709-713.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed