Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24019-24022    https://doi.org/10.11896/cldb.19070145
  无机非金属及其复合材料 |
温度对石英纤维毡隔热性能的影响
郭建业1, 赵英民2, 吴朝军3, 李文静1, 杨洁颖1, 张丽娟1, 苏力军1
1 航天特种材料及工艺技术研究所,北京100074
2 中国航天科工飞航技术研究院,北京100074
3 火箭军驻北京地区第六代表室,北京100074
Effect of Temperature on Thermal Insulation Performance of Quartz Fiber Felt
GUO Jianye1, ZHAO Yingmin2, WU Chaojun3, LI Wenjing1, YANG Jieying1, ZHANG Lijuan1, SU Lijun1
1 Research Institute of Aerospace Special Materials and Processing Technology, Beijing 100074, China
2 HIWING Technology Academy of CASIC, Beijing 100074, China
3 The Sixth Representative Office in Beijing of Rocket Force, Beijing 100074, China
下载:  全 文 ( PDF ) ( 4166KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石英纤维毡因具有耐高温、低导热、质轻、可随形性等特点而在空天飞行器热防护领域中具有巨大的应用潜力,但是对其隔热性能缺乏系统性研究。鉴于此,本工作通过研究高温下石英纤维毡导热系数的变化及高温处理前后纤维毡隔热性能的变化,评价了温度对石英纤维毡隔热性能的影响。结果显示,随着温度升高,石英纤维毡的导热系数逐渐增大,1 000 ℃时导热系数为室温导热系数的4.9倍,比同温度下的纤维增强气凝胶复合材料高0.087 W/(m·K);对经不同温度处理前后的石英纤维毡的微观结构、密度、气孔率、线收缩率、导热系数及石英灯考核背温进行比较,结果显示,石英纤维毡在1 000 ℃下可保持基本结构不变,不同温度处理后纤维毡的室温导热系数基本不变,1 000 ℃处理后石英纤维毡的导热系数相比处理前增大13%;20 mm厚纤维毡在1 000 ℃下的1 000 s石英灯隔热性能考核结果显示,1 000 ℃处理后石英纤维毡的背温相比处理前高8.4%。本工作为石英纤维毡在高温条件下的使用以及高温重复使用提供了重要依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭建业
赵英民
吴朝军
李文静
杨洁颖
张丽娟
苏力军
关键词:  石英纤维毡  导热系数  隔热性能    
Abstract: Quartz fiber felt has great potential in the field of aerospace thermal protection due to its high temperature resistance, low thermal conductivity, light weight and conformability. However, there is a lack of systematic research on its thermal insulation performance. In view of this, this work evaluated the effect of temperature on the thermal insulation performance of quartz fiber felt by studying the change of its thermal conductivity at high temperature and the change of thermal insulation performance of quartz fiber felt before and after high temperature treatment. The results show that the thermal conductivity of quartz fiber felt increases with the increase of temperature, and the thermal conductivity at 1 000 ℃ is 4.9 times that of room temperature, and it is 0.087 W/(m·K) higher than that of fiber reinforced aerogel composites at the same temperature. By comparing the microstructure, density, porosity, linear shrinkage, thermal conductivity and back temperature of quartz fiber felt before and after heat treatment at different temperatures, the results show that the structure of quartz fiber felt remians unchanged at 1 000 ℃, and the thermal conductivity of fiber felt at room temperature remains unchanged after heat treatment at different temperatures. The thermal conductivity of quartz fiber felt after treated at 1 000 ℃ increases by 13% compared with that before treated. The test results of thermal insulation performance of 20 mm thick fiber felt for 1 000 ℃ 1 000 s quartz lamp show that the back temperature of quartz fiber felt after treated at 1 000 ℃ is 8.4% higher than that before treatment. This work provides an important basis for the use of quartz fiber felt at high temperature and its reuse at high temperature.
Key words:  quartz fiber felt    thermal conductivity    thermal insulation performance
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  TB35  
通讯作者:  tzcl200216@163.com   
作者简介:  郭建业,航天特种材料及工艺技术研究所,工程师。2016年4月毕业于中国航天科工三院,获得硕士学位。同年加入航天特种材料及工艺技术研究所工作至今,主要从事热防护材料的研究工作。
赵英民, 中国航天科工飞航技术研究院,研究员。1993年7月毕业于吉林大学,物理化学硕士学位,主要从事非金属功能材料的研究工作。
引用本文:    
郭建业, 赵英民, 吴朝军, 李文静, 杨洁颖, 张丽娟, 苏力军. 温度对石英纤维毡隔热性能的影响[J]. 材料导报, 2020, 34(24): 24019-24022.
GUO Jianye, ZHAO Yingmin, WU Chaojun, LI Wenjing, YANG Jieying, ZHANG Lijuan, SU Lijun. Effect of Temperature on Thermal Insulation Performance of Quartz Fiber Felt. Materials Reports, 2020, 34(24): 24019-24022.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070145  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24019
1 Xie W H, Han G K, Meng S H, et al.Acta Aeronautica et Astronautica Sinica, 2019, 40(8), 6(in Chinese).
解维华, 韩国凯, 孟松鹤, 等.航空学报, 2019, 40(8), 6.
2 Cao C Y, Wang R X, Xing X D, et al.Journal of Astronautics, 2019, 40(3), 352(in Chinese).
曹晨宇, 王睿星, 邢晓冬, 等.宇航学报, 2019, 40(3), 352.
3 Kong B, Yang J Y, Wang M, et al.Journal of Northwestern Polytechnical University, 2018, 36(6), 1162(in Chinese).
孔斌, 杨家勇, 王曼, 等.西北工业大学学报, 2018, 36(6), 1162.
4 Li J, Chen H, Zhang S, et al.Experimental Thermal and Fluid Science, 2017, 86, 141.
5 Xing Y J, Sun B, Gao K, et al.Aerospace Materials & Technology, 2018, 48(4), 9(in Chinese).
邢亚娟, 孙波, 高坤, 等.宇航材料工艺, 2018, 48(4), 9.
6 崔泰航, 白雪松. 中国航天第三专业信息网第三十九届技术交流会暨第三届空天动力联合会议. 洛阳, 2018, pp. 216.
7 Sun X K, Zhang S C, Wu W, et al.Journal of Ceramics, 2018, 39(1), 59(in Chinese).
孙现凯, 张世超, 吴蔚, 等.陶瓷学报, 2018, 39(1), 59.
8 Mui D, Clancy H M. Ceramics Engineering and Science Proceedings, 2008, 63 (12), 793.
9 Kourtides D A, Pitts W C, Goldstein H E, et al. U.S. patent, US5038693, 1991.
10 李明伟, 曾岗, 赵轶杰, 等. 中国专利, CN101725795A, 2010.
11 陈照峰, 李承东.中国专利, CN105020540A, 2015.
[1] 张亚娟, 李亚楠, 宋晓艳, 王海滨, 侯超, 聂祚仁. 特殊粒径分布球形Ni粉的制备及SLM工艺性能研究[J]. 材料导报, 2020, 34(6): 6114-6119.
[2] 张倩, 郑振荣, 赵晓明, 毛科铸, 罗丽娟. 高温下涂层织物传热过程的数值模拟[J]. 材料导报, 2020, 34(16): 16167-16171.
[3] 仇中柱, 李晟南, 魏丽东, 秦承芳, 姚远, 姜未汀, 郑莆燕, 张涛. 相变微胶囊悬浮液中颗粒润湿性对导热系数的影响[J]. 材料导报, 2019, 33(Z2): 623-626.
[4] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[5] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[6] 王博, 朱孝钦, 胡劲, 常静华, 陈洋, 史杰. 利用纳米石墨强化正癸酸-十四醇复合相变材料的导热性能[J]. 材料导报, 2019, 33(22): 3815-3819.
[7] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[8] 王同生, 李亚伟, 桑绍柏, 徐义彪, 王庆虎. 添加热氧化鳞片石墨对高炉炭砖显微结构和性能的影响[J]. 材料导报, 2019, 33(11): 1831-1835.
[9] 丁聪, 郭丽萍, 雷东移, 徐燕慧, 朱玉, 邓忠华. 轻质保温高延性水泥基复合材料的拉伸性能与耐久性能[J]. 材料导报, 2019, 33(10): 1652-1658.
[10] 刘自力, 林嘉伟, 罗扬, 任丽, 左建良. 表面活性剂协同超声分散制备还原氧化石墨烯@月桂酸-棕榈酸复合相变材料及其表征[J]. 材料导报, 2018, 32(24): 4381-4385.
[11] 张新铭, 陈丹阳, 王花. 基于二维Voronoi模型的多孔泡沫金属导热性能模拟研究*[J]. 《材料导报》期刊社, 2017, 31(21): 135-138.
[12] 赵思勰,晏华,汪宏涛,李云涛,余荣升,杨健健. 月桂酸/膨胀珍珠岩复合相变材料的制备与热性能研究*[J]. 材料导报编辑部, 2017, 31(10): 107-111.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed