Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24014-24018    https://doi.org/10.11896/cldb.19100030
  无机非金属及其复合材料 |
CTAB对无机沉淀-胶溶法制备介孔层状TiO2结构与性能的影响
张理元1,2, 尤佳1, 钟雅洁1, 董志红1, 韩炎霖1, 孙绪兵1,2, 由耀辉1,2
1 内江师范学院化学化工学院,内江641112
2 果蔬类废弃物资源化四川省高校重点实验室,内江641112
Effect of CTAB on Structure and Properties of Mesoporous and Layered TiO2 Prepared by Inorganic Precipitation-Peptization Method
ZHANG Liyuan1,2, YOU Jia1, ZHONG Yajie1, DONG Zhihong1, HAN Yanlin1, SUN Xubing1,2, YOU Yaohui1,2
1 College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641112, China
2 Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Sichuan Provincial College, Neijiang 641112, China
下载:  全 文 ( PDF ) ( 3545KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以十六烷基三甲基溴化铵(CTAB)作为软模板,硫酸钛为钛源,采用无机沉淀-胶溶法制备了介孔层状CTAB-TiO2。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、紫外可见吸收光谱(UV-Vis-Abs)、比表面积分析仪(BET)分别对样品的表面形貌、晶相组成、紫外吸收带边、比表面积和孔结构进行了表征分析。以甲基橙为目标降解物,研究了样品的光催化性能。结果表明:在相同条件下,300 W金卤灯照射28 min,550 ℃煅烧得到的5.69% CTAB-TiO2对甲基橙的降解率高达96.02%,相对纯TiO2有极大提高。CTAB对TiO2改性后,试样出现了介孔层状结构,结晶度和晶粒尺寸均减小,促进了锐钛矿向金红石晶型的转变,并且CTAB的引入使得TiO2的光吸收带边发生了一定的红移,从而提高了其光催化性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张理元
尤佳
钟雅洁
董志红
韩炎霖
孙绪兵
由耀辉1
2
关键词:  沉淀-胶溶法  CTAB  介孔层状TiO2  光催化    
Abstract: Mesoporous and layered CTAB-TiO2 was prepared by inorganic precipitation-peptization method using hexadecyl trimethyl ammonium bromide (CTAB) as a soft template and titanium sulphate as titanium source. The surface morphology, crystalline phase, ultraviolet absorption band, specific surface and pore structure of the samples were analyzed by field emission scanning electron microscopy (FESEM), X-Ray diffractometer (XRD), ultraviolet visible absorption spectrum (UV-Vis-Abs), specific surface area meter (BET), respectively. The photocatalytic properties of the samples were studied with methyl orange as the target degradation. The results indicate that under irradiation with 300 W gold halogen lamps for 28 min, the degradation rate of methyl orange by 5.69% CTAB-TiO2 calcined at 550 ℃ was up to 96.02%, which was significantly higher than that of pure TiO2. After the modification of TiO2 by CTAB, the mesoporous and layered structure was formed, the crystallinity and grain size of TiO2 were decreased, and transformation from anatase to rutile was promoted. Besides, the introduction of CTAB caused a certain red shift of the light absorption band of TiO2, thus improving its photocatalytic performance.
Key words:  precipitation-peptization method    CTAB    mesoporous and layered TiO2    photocatalysis
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  TB34  
基金资助: 内江师范学院重点项目(17JC23);内江师范学院大学生创新项目(X2020015;X2020023)
通讯作者:  allenyouyaohui@126.com   
作者简介:  张理元,2014年12月毕业于四川大学材料学专业,获博士学位。目前为内江师范学院化学化工学院副教授,主要从事无机功能材料、环境保护材料、废弃物资源化研究。主持四川省科技计划项目1项,四川省教育厅重点项目1项,内江师范学院校级科研项目多项。近几年,以第一作者在国内外重要期刊发表学术论文20余篇,其中SCI收录12篇。
由耀辉,2014年6月毕业于四川大学生物质化学与工程专业,获博士学位,现任内江师范学院化学化工学院副教授,特聘教授,化学化工学院学术委员会委员。主持国家自然科学基金1项,四川省重大科技支撑计划1项;以第一作者或通讯作者发表论文20余篇;以第一发明人获2项发明专利授权;荣获内江市学科带头人称号、四川轻化工大学硕士研究生导师。
引用本文:    
张理元, 尤佳, 钟雅洁, 董志红, 韩炎霖, 孙绪兵, 由耀辉1,2,. CTAB对无机沉淀-胶溶法制备介孔层状TiO2结构与性能的影响[J]. 材料导报, 2020, 34(24): 24014-24018.
ZHANG Liyuan, YOU Jia, ZHONG Yajie, DONG Zhihong, HAN Yanlin, SUN Xubing, YOU Yaohui. Effect of CTAB on Structure and Properties of Mesoporous and Layered TiO2 Prepared by Inorganic Precipitation-Peptization Method. Materials Reports, 2020, 34(24): 24014-24018.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100030  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24014
1 Ma F J, Li X Y, Zong B Y, et al. China Environmental Science, 2018, 38(10), 115 (in Chinese).
马富军, 李新洋, 宗博洋, 等.中国环境科学, 2018, 38(10), 115.
2 Han W L, Chen H M. Chemical Industry and Engineering Progress, 2018, 37(1), 350 (in Chinese).
韩文亮, 陈海明.化工进展, 2018, 37(1), 350.
3 Chen Y, Zhai B Y, Liang Y N, et al. Journal of the Chinese Ceramic Society, 2019, 47(4), 433 (in Chinese).
陈颖, 翟勃银, 梁宇宁, 等.硅酸盐学报, 2019, 47(4), 433.
4 Meng Y, Xia S J, Xue J L, et al. Chinese Journal of Inorganic Chemistry, 2018, 34(9), 1632 (in Chinese).
孟跃, 夏盛杰, 薛继龙, 等.无机化学学报, 2018, 34(9), 1632.
5 Wang J, Zhang D, Deng J, et al.Journal of Colloid & Interface Science, 2018, 516, 215.
6 González-Moya J R, Garcia-Basabe Y, Rocco M L M, et al. Nanotech-nology, 2016, 27, 285401.
7 Du X H, Li Y, Yin H, et al. Acta Physico-Chimica Sinica, 2018, 34(4), 414 (in Chinese).
杜新华, 李阳, 殷辉, 等.物理化学学报, 2018, 34(4), 414.
8 Liu X, Zhao L, Wang S, et al. Science Bulletin, 2019, 64(16), 1148.
9 Zhou W, Liu H, Boughton R I, et al.Journal of Materials Chemistry, 2010, 20(29), 5993.
10 Kumar S G, Devi L G.The Journal of Physical Chemistry A, 2011, 115(46), 13211.
11 Zhang H, Govorov A O.The Journal of Physical Chemistry C, 2014, 118(14), 7606.
12 Zhang Y, Xu J, Xu P, et al.Nanotechnology, 2010, 21(28), 285501.
13 Wang X, Li Z, Shi J, et al.Chemical Reviews, 2014, 114(19), 9346.
14 Wu L, Yu J C, Fu X.Journal of Molecular Catalysis A Chemical, 2006, 244(1-2), 25.
15 Cui L, Dong J, Yang L J, et al. Fine Chemicals, 2018, 35(4), 580 (in Chinese).
崔磊, 董晶, 杨丽娟, 等. 精细化工, 2018, 35(4), 580.
16 Meng C, Wang H, Wu Y B, et al. Acta Chimica Sinica, 2017, 75(5), 98 (in Chinese).
孟超, 王华, 吴煜斌, 等.化学学报, 2017, 75(5), 98.
17 Luo T, Wan X J, Jiang S X, et al.Applied Physics A-Materials Science & Processing, 2018, 124(4), 304.
18 Liu S C, Lv K L, Deng K J, et al. Imaging Science and Photochemistry, 2008, 26(2), 138 (in Chinese).
刘松翠, 吕康乐, 邓克俭, 等.影像科学与光化学, 2008, 26(2), 138.
19 Yang H, Shen Q H, Gao J W, et al. Rare Metal Materials and Enginee-ring, 2008, 37(s2), 201 (in Chinese).
杨辉, 申乾宏, 高基伟, 等.稀有金属材料与工程, 2008, 37(s2), 201.
20 Wu Y H, Long M C, Cai W M, et al. Journal of Chemical Engineering of Chinese Universities, 2010, 24(6), 1005 (in Chinese).
吴亚惠, 龙明策, 蔡伟民, 等.高校化学工程学报, 2010, 24(6), 1005.
21 Liu B, Louis M, Jin L, et al.Chemistry-A European Journal, 2018, 24(38), 9651.
22 Liu Y, Becker B, Burdine B, et al.RSC Advances, 2017, 7(34), 21273.
23 Wei X X, Zhang Y, Zhao L F, et al. Materials Reports B: Research Papers, 2012, 26(4), 50 (in Chinese).
卫贤贤, 张晔, 赵亮富, 等.材料导报:研究篇, 2012, 26(4), 50.
24 Zhuo N, Li L, Gao Y,et al. Chinese Journal of Inorganic Chemistry, 2013, 29(5), 991 (in Chinese).
禚娜, 李莉, 高宇, 等.无机化学学报, 2013, 29(5), 991.
25 Jiang G M, Yan J K, Yang G, et al. Materials Reports A:Review Papers, 2016, 30(10), 95.
姜贵民, 严继康, 杨钢, 等. 材料导报:综述篇, 2016, 30(10), 95.
26 Miyagi T, Kamei M, Mitsuhashi T, et al. Chemical Physics Letters, 2004, 390(4-6), 399.
27 Wang B, Zhang G X, Zheng S L, et al. Chinese Journal of Inorganic Chemistry, 2014, 29(4), 382 (in Chinese).
汪滨, 张广心, 郑水林, 等.无机材料学报, 2014, 29(4), 382.
28 Jiang H Q, Wang P, Lu D D, et al. Chinese Journal of Inorganic Chemistry, 2006, 22(1), 73 (in Chinese).
姜洪泉, 王鹏, 卢丹丹, 等.无机化学学报, 2006, 22(1), 73.
29 Bae Y S, YazaydⅠn A O, Snurr R Q, et al.Langmuir, 2010, 26(8), 5475.
30 Cui J J, He W, Liao S J, et al. Materials Reports, 2009, 23(7), 82 (in Chinese).
崔静洁, 何文, 廖世军, 等.材料导报, 2009, 23(7), 82.
31 Liu L C, Ji Z Y, Zou W X, et al.ACS Catalysis, 2013, 3(9), 2052.
[1] 巩云, 王龙龙, 徐亚琪, 张传香. 二氧化钛光催化材料的改性研究进展[J]. 材料导报, 2020, 34(Z2): 37-40.
[2] 刘畅, 丁博, 杨贤峰, 叶瑞雪, 季益龙, 代兵, 吕辉鸿. 新型FeWO4@ZnS异质结微球制备及其光催化降解四环素和亚甲基蓝研究[J]. 材料导报, 2020, 34(Z2): 78-83.
[3] 赵可一, 曾和平. 镀铜空心玻璃微珠的光催化降解性能[J]. 材料导报, 2020, 34(Z2): 132-137.
[4] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[5] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[6] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[7] 张瑞阳,李成金,张艾丽,周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[8] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[9] 王薇, 刘竟成, 霍旺晨, 王均, 王芊卉. C掺杂纳米硅藻土@TiO2催化剂吸附-光催化降解油田废水[J]. 材料导报, 2020, 34(23): 23027-23032.
[10] 黄国富, 刘坤, 王忠凯, 宋蓉蓉, 朱颖, 汤睿, 张寒冰, 童张法. SDBS诱导磁性花球状SDBS/BiOBr-MB的制备及其增强的可见光催化性能[J]. 材料导报, 2020, 34(22): 22024-22029.
[11] 李靖, 刘天宝, 朱亚鑫, 王鹏, 堵锡华, 张永才. 溶剂热合成可见光响应硫氮共掺杂TiO2光催化剂及其催化还原水中Cr(Ⅵ)[J]. 材料导报, 2020, 34(21): 21045-21051.
[12] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[13] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[14] 乔帅, 赵朝成, 贺凤婷, 赵洪飞, 董培, 林飞飞, 台兆鑫. 原位沉积法制备g-C3N4/Ag3PO4复合光催化剂降解卡马西平的性能研究[J]. 材料导报, 2020, 34(19): 19010-19017.
[15] 胡玉林, 李永进, 谢燕春, 阳生红, 张曰理. 掺Ni铁酸铋纳米粉的制备及光催化性能[J]. 材料导报, 2020, 34(18): 18009-18013.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed