Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21030016-9    https://doi.org/10.11896/cldb.21030016
  高分子与聚合物基复合材料 |
光敏聚酰亚胺:低温固化设计策略
朋小康, 黄兴文, 刘荣涛, 张永文, 张诗洋, 黄锦涛, 闵永刚
广东工业大学材料与能源学院,广州 510006
Photosensitive Polyimide: Design Strategy of Low-temperature Curing
PENG Xiaokang, HUANG Xingwen, LIU Rongtao, ZHANG Yongwen, ZHANG Shiyang, HUANG Jintao, MIN Yonggang
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
下载:  全 文 ( PDF ) ( 15414KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 扇出型晶圆级封装(FOWLP)由于在成本、尺寸、输入/输出密度等方面有更优化的解决方案而备受关注。随着封装厚度的薄型化,作为其中再布线层介电材料的光敏聚酰亚胺也面临着新的要求:更低介电常数、更低热膨胀系数、更低残余应力、更低固化温度等。FOWLP面临的问题主要是晶圆翘曲,减少封装工艺热预算可有效降低封装中金属材料与介电材料之间因热力学性质差异所导致的应力集中。由此,光敏聚酰亚胺需首要解决的即是传统体系在固化温度方面的限制(>300 ℃)。本文从聚酰亚胺合成过程角度综述了近些年来在降低光敏聚酰亚胺固化温度方面的研究进展及发展现状,介绍了基于聚酰胺酸、聚异酰亚胺、可溶性聚酰亚胺低温固化体系的优劣势,最后展望了低温固化体系的进一步发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朋小康
黄兴文
刘荣涛
张永文
张诗洋
黄锦涛
闵永刚
关键词:  光敏聚酰亚胺  低温固化  设计策略  聚酰胺酸  聚异酰亚胺  可溶性聚酰亚胺    
Abstract: Fan-out wafer level packaging (FOWLP) has attracted much attention due to the more optimized solution in cost, size, input/output density, etc. With the thinning of the package thickness, photosensitive polyimide utilized as the dielectric material in redistribution layer needs to fulfill new demanding tasks: lower dielectric constant, lower coefficient of thermal expansion, lower residual stress, lower curing temperature, etc. The main problem faced by FOWLP is wafer warpage. Reducing the thermal budget in packaging process can effectively minimize the stress concentration caused by the difference in thermodynamic properties between the metal and dielectric layers. Therefore, the primary problem to be solved for photosensitive polyimide is avoiding the restriction of curing temperature (>300 ℃) in the conventional system. In this review, the recent research progress and development status in reducing the curing temperature of photosensitive polyimide are summarized from the perspective of polyimide synthesis process. The advantages and disadvantages of low-temperature curing systems based on polyamic acid, polyisoimide and soluble polyimide are introduced. Finally, the further development trend of low-temperature curing system is prospected.
Key words:  photosensitive polyimide    low-temperature curing    design strategy    polyamic acid    polyisoimide    soluble polyimide
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  TQ57  
基金资助: 广东省引进创新创业团队项目(2016ZT06C412)
通讯作者:  yong686@126.com   
作者简介:  朋小康,2016年本科毕业于东莞理工学院,2019年6月毕业于广东工业大学,获工程硕士学位。现于广东工业大学材料与能源学院攻读博士学位,在闵永刚教授的指导下进行研究。目前主要研究方向为光敏聚酰亚胺及柔性器件应用。
闵永刚,教授,博士研究生导师,国家杰出青年科学基金获得者,中组部国家特聘专家,科技部“973”项目首席科学家。1986年本科毕业于吉林大学,1991年、1995年于美国宾夕法尼亚大学分别取得硕士、博士学位。主要研究方向包括:高性能聚合物材料 (聚酰亚胺、PEEK、PTFE),半导体/PCB封装技术(先进埋藏技术、SiP、SoC)以及有机光电材料与器件等。已发表论文200余篇。
引用本文:    
朋小康, 黄兴文, 刘荣涛, 张永文, 张诗洋, 黄锦涛, 闵永刚. 光敏聚酰亚胺:低温固化设计策略[J]. 材料导报, 2022, 36(19): 21030016-9.
PENG Xiaokang, HUANG Xingwen, LIU Rongtao, ZHANG Yongwen, ZHANG Shiyang, HUANG Jintao, MIN Yonggang. Photosensitive Polyimide: Design Strategy of Low-temperature Curing. Materials Reports, 2022, 36(19): 21030016-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030016  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21030016
1 Dong H, Chen J, Hou D, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(7), 1073.
2 Lau J H. Fan-out wafer-level packaging, Springer, Singapore, 2018.
3 Liang C L, Lin Y S, Kao C L, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(9), 1438.
4 Braun T, Becker K F, Wöhrmann M, et al. In: International Conference on Electronics Packaging. Yamagata, 2017, pp. 325.
5 Shoji Y, Masuda Y, Hashimoto K, et al. In: IEEE 66th Electronic Components and Technology Conference (ECTC). Las Vegas, 2016, pp. 1707.
6 Lau J, Li M, Fan N, et al. International Symposium on Microelectronics, 2017, 2017(1), 000576.
7 Matsukawa D, Nakamura T, Enomoto T, et al. In: Additional Confe-rences (Device Packaging, HiTEC, HiTEN, & CICMT). Phoenix, USA, 2017, pp. 1.
8 Sasaki T. Journal of Photopolymer Science and Technology, 2016, 29, 379.
9 Fu M C, Higashihara T,Ueda M. Polymer Journal, 2017, 50(1), 57.
10 Fukukawa K,Ueda M. Polymer Journal, 2008, 40(4), 281.
11 Tomikawa M, Okuda R,Ohnishi H. Journal of Photopolymer Science and Technology, 2015, 28, 73.
12 Nawrocki D, Cooper A, Koizumi T, et al. International Symposium on Microelectronics, 2018, 2018(1), 000483.
13 Windrich F, Kappert E J, Malanin M, et al. European Polymer Journal, 2016, 84, 279.
14 Wang Y W,Chen W C. Materials Chemistry and Physics, 2011, 126(1-2), 24.
15 Ogura T, Higashihara T,Ueda M. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48(6), 1317.
16 Tseng L Y, Lin Y C, Kuo C C, et al. Reactive and Functional Polymers, 2020, 157, 104760.
17 Liu J G, Nakamura Y, Ogura T, et al. Chemistry of Materials, 2008, 20(1), 273.
18 Ogura T, Higashihara T,Ueda M. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(13), 3362.
19 Mochizuki A, Teranishi T,Ueda M. Macromolecules, 1995, 28, 365.
20 Mochizuki A, Yamada K, Teranishi T, et al. High Performance Polymers, 1994, 6, 225.
21 Mochizuki A, Teranishi T, Ueda M. Polymer, 1995, 36, 2153.
22 Seino H, Haba O, Ueda M, et al. Polymer, 1999, 40, 551.
23 Qian Z G, Ge Z Y, Li Z X, et al. Polymer, 2002, 43, 6057.
24 Li H S, Liu J G, Rui J M, et al. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(8), 2665.
25 Liang Z M, Yin J, Wu J H, et al. European Polymer Journal, 2004, 40(2), 307.
26 Zhu Z K, Yin J, Cao F, et al. Advanced Materials, 2000, 12(14), 1055.
27 Saito Y, Mizoguchi K, Higashihara T, et al. Journal of Applied Polymer Science, 2009, 113(6), 3605.
28 Moore J A, Gamble D R. Polymer Engineering and Science, 1992, 32(21), 1642.
29 Shin G J, Jung J C, Chi J H, et al. Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45(5), 776.
30 Choi K H, Jung J C, Kim K S, et al. Polymers for Advanced Technologies, 2005, 16(5), 387.
31 Omote T, Mochizuki H, Koseki K, et al. Macromolecules, 1990, 23, 4796.
32 Omote T, Koseki K,Yamaoka T. Macromolecules, 1990, 23, 4788.
33 Takafumi F, Toshiyuki O, Takao I, et al. Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39, 3451.
34 Sugawara S, Tomoi M, Oyama T. Polymer Journal, 2006, 39(2), 129.
[1] 孙万兴, 郭少青, 董弋, 刘洋, 高丽兵, 卫贤贤, 曹艳芝, 董红玉, 李鑫. 低温固化银浆的制备及树脂粘结相对其性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 402-405.
[2] 王涛, 李金辉, 赵雅绪, 朱良, 张少霞, 张国平, 孙蓉, 汪正平. 光敏聚苯并噁唑的研究现状与发展趋势[J]. 材料导报, 2020, 34(19): 19183-19189.
[3] 林进义, 安翔, 白鲁冰, 徐曼, 韦传新, 解令海, 林宗琼, 黄维. 柔性高分子半导体:力学性能和设计策略[J]. 材料导报, 2020, 34(1): 1001-1008.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed