Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9133-9139    https://doi.org/10.11896/cldb.20020002
  无机非金属及其复合材料 |
导热吸波材料的研究进展及未来发展方向
贾琨1,2, 王喆2, 王蓬1,2, 王东红1,2, 马晨1,2, 刘伟1,2,*
1 电磁防护材料及技术山西省重点实验室,太原 030032
2 中国电子科技集团公司第33研究所,太原 030032
Progress and Future Developments of Thermal Microwave Absorbing Materials
JIA Kun1,2, WANG Zhe2, WANG Peng1,2, WANG Donghong1,2,MA Chen1,2, LIU Wei1,2,*
1 Electromagnetic Protection Materials and Technology Key Laboratory of Shanxi Province, Taiyuan 030032, China
2 NO.33 Research Institute of China Electronics Technology Group Corporation, Taiyuan 030032, China
下载:  全 文 ( PDF ) ( 9259KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着电子设备功率密度的提高,电子器件的电磁兼容和散热问题日趋严重,兼具双功能特性的导热吸波材料成为解决该问题的新趋势。目前,该类材料主要的研发思路是在高分子基体中同时加入导热填料和吸波剂以实现材料的导热吸波双功能。然而,橡胶等高分子材料中功能填料添加量存在最大限度,导热填料与吸波剂添加量存在此消彼长的问题,难以实现两种性能的协同提升。目前,尚无有效手段解决这一难题,只能通过协调两种功能填料的添加比例,确定材料导热和吸波性能的最优平衡点。
鉴于影响材料导热性能和吸波性能的因素很多,且各因素之间相互影响,本领域学者通过研究填料组分之间的关系,综合分析了粒径、结构参数和成型工艺参数等因素对材料性能的影响,最终得到了对实际应用具有较高指导价值的组分调节机理和方法。经过十多年的发展,导热吸波材料的制备技术取得了长足进步,但仍存在一些技术瓶颈没有突破,制约着整个行业的发展。例如,缺乏材料微观结构和功能单元模型、通用设计理论不能指导实际工业生产、尚无兼具导热与吸波功能的单组分填料等问题都严重制约了导热吸波材料基础设计理论的发展。在导热吸波材料的工业化生产过程中,材料导热性能测试标准种类多,测试结果不具有对比性;而吸波性能目前存在两种评价方法,其在评价指标、测试原理、测试方法和测试标准等方面存在较大差异,检测结果无法横向比较。综上,目前导热吸波材料的性能评价缺少统一规范的标准,严重制约了产品的推广应用。同时,导热吸波材料的主要功能指标还需要进一步提升,以满足实际使用的需求。
本文综述了导热吸波材料的研究历程和最新研究进展,分析了导热吸波材料研究中需要解决的问题,并展望了其未来的研究热点和技术发展方向,旨在为制备高性能导热吸波材料提供参考,提升行业技术水平,改善产品性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾琨
王喆
王蓬
王东红
马晨
刘伟
关键词:  导热吸波材料  导热性能  吸波性能    
Abstract: Microwave absorbing materials can effectively solve the electromagnetic compatibility of electronic equipment while thermal conductive mate-rials are the key to heat dissipation of electronic devices. As the power density of electronic devices has increased, significant time has been spent researching the functional integration of microwave absorbing materials and thermal conductive materials, in order to improve the electromagnetic compatibility and heat dissipation of electronic devices. Most studies improved the thermal conductivity and microwave absorbing performance of the materials by simultaneously adding a traditional thermal conductive filler and microwave absorbing agent into the matrix. However, due to the limit on the total amount of functional fillers in polymer materials, adding one of the functional fillers (thermal conduction or microwave absorption) will inevitably reduce the content of the other functional filler, which can hardly achieve the collaborative improvement of two properties. At present, there is no effective method to solve this problem; thermal conduction and microwave absorption performance can only be balanced by coordinating the two functional filler proportions.
There are many factors influencing the thermal conductivity and microwave absorption performance of materials, with the different factors often interacting with one another. To reduce the complexity of the issue, the influence of various factors on material performance (such as particle size, structural parameters and process parameters) have been comprehensively analyzed, by studying the relations between the doping filler components. Finally the regulation mechanism and method can be obtained, which have a high guidance value for practical application. After more than ten years of development, researchers have made great progress in developing the preparation technology of thermal microwave absorbing materials. However, some technical bottlenecks still remain, hinding any further development of the industry. For example, the lack of a material microstructure and functional unit model, the disconnection between theory and industrial production applications, and the dearth of a guide on the use of multi-functional fillers seriously restrict innovation in basic design theory on thermal microwave absorbing materials. Moreover, there are some deficiencies with the industrial production process. Currently, large differences exist in the evaluation indexes, test principles, test methods and test standards between the thermal conductivity and microwave absorption of the industry products. A large disparity in test data between the two product types has led to a lack of uniform standards, which restricts the promotion and application of the products.
In this paper, we summarize the research history and the latest research progress of thermal microwave absorbing materials, analyzing their current problems in the research of thermal microwave absorbing materials, and looking forward to the direction of future research and development. The purpose of this paper is to provide a reference for the preparation of high-performance thermal microwave absorbing materials, enhancing the technical level of the industry to improve upon product performance.
Key words:  thermal microwave absorbing materials    thermal conductivity    microwave absorbing property
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  TN972  
  TM25  
基金资助: 国家自然科学基金(U1710115);山西省自然科学基金面上项目(201701D121050);山西省科学基金青年基金项目(201901D211576)
通讯作者:  lwucas2014@126.com   
作者简介:  贾琨,工程师,2015年6月毕业于西南大学材料与能源学部,获得工学硕士学位。现工作于电磁防护材料及技术山西省重点实验室,目前主要从事新型高性能电磁防护材料制备技术研究。
刘伟,2017年6月毕业于中国科学院山西煤炭化学研究所,获得工程硕士学位。同年入职中国电子科技集团公司第三十三研究所工作至今,主要从事碳基电磁防护材料的研究。
引用本文:    
贾琨, 王喆, 王蓬, 王东红, 马晨, 刘伟. 导热吸波材料的研究进展及未来发展方向[J]. 材料导报, 2021, 35(9): 9133-9139.
JIA Kun, WANG Zhe, WANG Peng, WANG Donghong,MA Chen, LIU Wei. Progress and Future Developments of Thermal Microwave Absorbing Materials. Materials Reports, 2021, 35(9): 9133-9139.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020002  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9133
1 Luo B, Liu S, Zhi L. Small,2012,8,630.
2 Zhao W W, Fu R L, Gu X G,et al. Materials Reports A: Review Papers,2013,27(3),76(in Chinese).
赵维维,傅仁利,顾席光,等.材料导报:综述篇,2013,27(3),76.
3 Li C B. Technology and Market,2008(10),72(in Chinese).
李诚斌.技术与市场,2008(10),72.
4 Bu W B. Materials Reports,2001,15(5),34(in Chinese).
步文博.材料导报,2001,15(5),34.
5 Wang X, Wang Y Z. Materials Reports B:Research Papers,2013,27(10),143(in Chinese).
王星,王玉璋.材料导报:研究篇,2013,27(10),143.
6 Lin T, Li C Z, Ren Y Q, et al. Chinese Journal of Catalysis,2019,40(10),1548.
7 Bi D X. Electromagnetic field theory, Electronic Industry Press, China,1985(in Chinese).
毕德显.电磁场理论,电子工业出版社,1985.
8 Liu W D. Safety & EMC,2008(1),38(in Chinese).
刘伟德.电磁干扰与兼容,2008(1),38.
9 Jia K, Li K X, Zhang Z K, et al. Jorunal of Functional Materials,2018,49(2),2136(in Chinese).
贾琨,李克训,张泽奎,等.功能材料,2018,49(2),2136.
10 Yang F L, Hou X Z, Zheng K, et al. Journal of Chongqing University,2017,40(10),53(in Chinese).
杨芾藜,侯兴哲,郑可,等.重庆大学学报,2017,40(10),53.
11 Zhou Y Y. Preparation and properties of thermo resistant resin based wave absorbing materials. Master's Thesis, Northwestern Polytechnical University, China,2016(in Chinese).
周影影.耐温树脂基吸波材料的制备及性能研究.硕士学位论文,西北工业大学,2016.
12 Sire L, Ramanan S, lsmail H, et al. Thermochimica Acta,2005,430(1-2),155.
13 Ban G D, Liu Z H, Ding Y D, et al. Journal of Logistics Engineering,2016,32(3),58(in Chinese).
班国东,刘朝辉,丁逸栋,等.后勤工程学院学报,2016,32(3),58.
14 Jiang G W, Huang J H. Journal of Materials Engineering,2017,45(7),41(in Chinese).
姜贵文,黄菊花.材料工程,2017,45(7),41.
15 Gou Y J, Liu Z I, Zhang M, et al. International Journal of Heat and Mass Transfer,2014,74,358.
16 Chen W B, Xiao P, Zhou W, et al. Acta Materiae Compositae Sinica,2017,34(11),2530(in Chinese).
陈文博,肖鹏,周伟,等.复合材料学报,2017,34(11),2530.
17 Zhao L Y, Zeng F C, Liao Y F, et al. Journal of Central South University,2015,46(1),94(in Chinese).
赵立英,曾凡聪,廖应峰,等.中南大学学报,2015,46(1),94.
18 Yuan T, Zhou X H, Wang F, et al. Jorunal of Functional Materials,2014,45(20),20001(in Chinese).
袁腾,周显宏,王锋,等.功能材料,2014,45(20),20001.
19 Zou H Z, Wan W T, Yang M H, et al. Polymeric Materials Science and Engineering,2019,35(2),136(in Chinese).
邹海仲,万炜涛,杨名华,等.高分子材料科学与工程,2019,35(2),136.
20 Shi Y, Mean J T, Wen S K, et al. Journal of Alloys and Compounds,2013,550,39.
21 Shen Z Z, Chen J H, Li B, et al. Journal of Alloys and Compounds,2020,815,152388.
22 Jia X W, Li Q Y, Ao C H, et al. Composites Part A,2020,129(1),105710.
23 Ujah C O, Popoola A P, Popoola O M, et al. Journal of Materials Science,2019,54(1),14064.
24 Xu J, Fisher T S. International Journal of Heat and Mass Transfer,2006,49(9-10),1658.
25 Kim K, Hyunwoo O, Kim J, et al. Journal of Nanoscience and Nanotechnology,2019,19(3),1525.
26 Ma Z N, Zhong B, Wang P Q, et al. Materials Reports B: Research Papers,2016,30(6),65(in Chinese).
马振宁,钟博,王培侨,等.材料导报:研究篇,2016,30(6),65.
27 Zivkovic I, Murk A. Electronics Letters,2012,48(18),1130.
28 Zhang Z, Tan J W, Gu W H, et al. Chemical Engineering Journal,2020,395(1),125190.
29 Wang L, Liu W D. Safety & EMC,2015(3),53(in Chinese).
汪磊,刘伟德.安全与电磁兼容,2015(3),53.
30 Zhang S, Wang W, Li Q Q, et al. CIESC Journal,2019,70(6),2129(in Chinese).
张朔,王维,李强强,等.化工学报,2019,70(6),2129.
31 Xiao Y, Huang C M, Li Y. China Rubber Industry,2016,14(12),5(in Chinese).
肖英,黄超明,李毅,等.橡胶工业,2016,14(12),5.
32 Shen Z, Chen J, Li B, et al. Journal of Alloys and Compounds,2019,815,152388.
33 Xia X H, Zhang Y Q, Chao D L, et al. Nanoscale,2014,6(10),5008.
34 Bibi M, Abbas S M, Ahmad N, et al. Composites Part B Engineering,2017,114,139.
35 Wang Y P, Peng Z, Jiang W. Journal of Materials Science Materials in Electronics,2016,27(6),6010.
36 Guo X, Bai Z, Zhao B, et al. Journal of Materials Science Materials in Electronics,2016,27(8),8408.
37 Jia K, Wang D H, Li K X, et al. Materials Reports A: Review Papers,2019,33(3),805(in Chinese).
贾琨,王东红,李克训,等.材料导报:综述篇,2019,33(3),805.
38 Yan L L, Qiao M J, Lei Y S, et al. Acta Metallurgica Sinica (English letters),2013,30(2),44(in Chinese).
闫丽丽,乔妙杰,雷忆三,等.复合材料学报,2013,30(2),44.
39 Ding X, Huang Y, Li S, et al. RSC Advances,2016,6(37),31440.
40 Jia K, Li K X, Zhang Z K, et al. Journal of Function Material,2018,49(2),02136(in Chinese).
贾琨,李克训,张泽奎,等.功能材料,2018,49(2),02136.
41 Bayat M, Yang H, Ko F. Polymer,2011,52(7),1645.
42 Shen Z Z, Chen J H, Li B, et al. Journal of Alloys and Compounds,2020,815(1),152388.
43 Chen G H, Huang S W, Yi X S. Ordnance Material Science and Engineering,2010,33(2),103(in Chinese).
陈光华,黄少文,易小顺.兵器材料科学与工程,2010,33(2),103.
44 Yun K D, Zhang Z H. Synthetic Fiber in China,2018,47(11),41(in Chinese).
贠凯迪,张昭环.合成纤维,2018,47(11),41(in Chinese).
45 Zhang Y, Sheng J Q, Liu L, et al. Safety & EMC,2019,156(1),29(in Chinese).
张颖,盛家琪,刘列,等.安全与电磁兼容,2019,156(1),29.
46 Andrew T, Smith A, Marie L. Nano Materials Science,2019,1(1),31.
47 Wang T T, Gu Y Z, Wang S K, et al. Journal of Beijing University of Aeronautics and Astronautics,2017,43(9),1931(in Chinese).
王婷婷,顾轶卓,王绍凯,等.北京航空航天大学学报,2017,43(9),1931.
48 Chen Y L, Peng H, Lou L, et al. Journal of Wuhan University of Technology (Materials Science),2019,34(4),876.
49 Wang G Q, Chen X, Li Y X. China Foundry,2019,16(3),190.
50 Peacock M A, Roy C K, Hamilton M C, et al. International Journal of Heat & Mass Transfer,2016,97,94.
51 Shi J, Qing H E. Journal of Aeronautical Materials,2018,38(2),32.
52 Min D, Zhou W, Qing Y, et al. Journal of Alloys and Compounds,2018,744(5),629.
53 Ghanashev I, Zhelyazkov I. Physics of Plasmas,1994,1(12),3734.
54 Zhou T D. Studies on preparation, structures and characteristics of FeSiAl powders. Master's Thesis, University of Electronic Science and Technology of China, China,2009(in Chinese).
周廷栋.FeSiAl片状微粉的制备、结构及性能研究.硕士学位论文,电子科技大学,2009.
55 Luo X Y. Research on electromagnetic shielding performance testing technology of materials. Master's Thesis, University of Electronic Science and Technology of China, China,2018(in Chinese).
罗显云.材料电磁屏蔽性能测试技术研究.硕士学位论文,电子科技大学,2018.
56 Luo F F. Preparation and electromagnetic properties of barium ferrite matrix composites. Master's Thesis, University of Electronic Science and Technology of China, China,2018(in Chinese).
罗斐斐.钡铁氧体基复合材料的制备及其电磁性能研究.硕士学位论文,电子科技大学,2014.
57 Li H, Li J J, Li Y B, et al. Industrial & Engineering Chemistry Research,2019,58(27),11927.
58 Wu C M, Murakami R, Lai S, et al. Modern Physics Letters B,2019,33(14),1940019.
59 Deng S C, Xiao C D, Yuan J L, et al. Applied Physics Letters,2019,115(10),101603.
60 Wang Y, Shin J H, Woodcock C, et al. International Journal of Heat and Mass Transfer,2018,121,534.
61 Park J J, Taya M. Journal of Electronic Packaging,2016,128(1),46.
[1] 汤琦, 颜桐桐, 孙豪, 王小蕾, 王春芙, 宗成中. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6): 6206-6211.
[2] 孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(9): 9055-9063.
[3] 金丹, 王欢, 杜雨果. 磁控原位聚合铁硅铬/聚苯胺复合材料吸波性能研究[J]. 材料导报, 2020, 34(24): 24150-24154.
[4] 林欢, 寇爱静, 张建伦, 董华. 电流热退火效应对碳纤维导热性能的影响[J]. 材料导报, 2020, 34(14): 14198-14203.
[5] 赵鹏飞, 耿浩然, 范浩军, 许伟建, 廖禄生, 彭政. 二硫化钼/碳纳米管/丁苯橡胶吸波材料的结构与性能[J]. 材料导报, 2020, 34(14): 14204-14208.
[6] 王艳芝, 张玲杰, 张一风, 张旺玺. 电纺制备聚丙烯腈/氮化硼杂化复合纤维及其结构、性能研究[J]. 材料导报, 2020, 34(12): 12158-12162.
[7] 周影影, 周万城, 叶梦元, 谢辉. 制备时间对CIPs/Fe3O4吸波性能的影响[J]. 材料导报, 2020, 34(10): 10008-10012.
[8] 张春旋, 李艳辉, 李亚楠, 张伟. 铁基FeSiBPCu纳米晶软磁合金粉体的制备及电磁波吸收性能[J]. 材料导报, 2020, 34(10): 10076-10081.
[9] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[10] 康剑, 崔帅, 魏恒勇, 卜景龙, 崔燚, 李慧, 杨柳, 罗婧, 季文玲. 电纺制备ZrO2多孔纤维及其导热性能[J]. 材料导报, 2019, 33(20): 3396-3400.
[11] 王玉江, 黄威, 黄玉炜, 魏世丞, 王博, 梁义, 徐滨士. SiC/Fe3O4复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10): 1624-1629.
[12] 周影影, 谢辉, 周万城. 羰基铁粉抗氧化性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 749-754.
[13] 周影影, 谢辉, 陶世平, 周万城. 球磨时间对FeSi合金吸波性能的影响[J]. 材料导报, 2018, 32(16): 2738-2742.
[14] 李通, 李金权, 王文广, 倪丁瑞. 影响碳/金属复合材料导热性能的主要因素探讨[J]. 材料导报, 2018, 32(15): 2640-2646.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed