Please wait a minute...
材料导报  2018, Vol. 32 Issue (15): 2640-2646    https://doi.org/10.11896/j.issn.1005-023X.2018.15.015
  金属与金属基复合材料 |
影响碳/金属复合材料导热性能的主要因素探讨
李通1, 李金权1, 王文广1,2, 倪丁瑞2
1 辽宁石油化工大学机械工程学院,抚顺 113001;
2 中国科学院金属研究所,沈阳 110016
A Discussion on the Main Factors Affecting Thermal Conductivityof Carbon/Metal Matrix Composites
LI Tong1, LI Jinquan1, WANG Wenguang1,2, NI Dingrui2
1 School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001;
2 Institute of Metal Research,Chinese Academy of Sciences, Shenyang 110016
下载:  全 文 ( PDF ) ( 1315KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳/金属复合材料在充分发挥增强体高导热、低热膨胀等优异性能的同时,还结合了金属材料易成形性等特点,成为近年来新型热管理材料的研究热点之一。目前,高性能导热复合材料仍存在一些关键问题亟待解决,如:碳材料与金属基体之间的界面调控、材料在制备过程中易产生微观裂纹等缺陷以及增强体空间排布的优化设计等。本文介绍常用高导热碳/金属复合材料的制备方法,并对影响金属基复合材料导热性能的因素及相应的改进措施进行了深入探讨。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李通
李金权
王文广
倪丁瑞
关键词:  金属基复合材料  高导热性能  碳材料  界面调控  微观缺陷  增强体空间排布    
Abstract: Recently, the carbon/metal composites which acquire high thermal conductivity and low thermal expansion of carbon reinforcements and also inherit the formability of metal matrices, have provoked intensive research interest. Up to now, there are still some problems which deserve solutions, such as carbon/metal interface control, micro-cracks formed in fabrication processing, optimizing the spatial arrangement of reinforcements and so on. This article introduces briefly the normal preparation methods of carbon/metal composites, and renders a critical discussion on the factors affecting the thermal conductivity of composites as well as the corresponding countermeasures.
Key words:  metal matrix composite    high thermal conductivity    carbon material    interface control    micro-defect    spatial arrangement of reinforcement
               出版日期:  2018-08-10      发布日期:  2018-08-09
ZTFLH:  O551.3  
基金资助: 国家自然科学基金(51641103);中国科学院金属研究所创新基金(2015-ZD02)
通讯作者:  王文广:通信作者,男,1973年生,博士,教授,硕士研究生导师,主要从事碳/金属复合材料的性能及微观结构研究 E-mail:wgwang@imr.ac.cn   
作者简介:  李通:男,1989年生,硕士研究生,研究方向为高导热碳/金属复合材料的制备及性能表征 E-mail:729429561@qq.com
引用本文:    
李通, 李金权, 王文广, 倪丁瑞. 影响碳/金属复合材料导热性能的主要因素探讨[J]. 材料导报, 2018, 32(15): 2640-2646.
LI Tong, LI Jinquan, WANG Wenguang, NI Dingrui. A Discussion on the Main Factors Affecting Thermal Conductivityof Carbon/Metal Matrix Composites. Materials Reports, 2018, 32(15): 2640-2646.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.15.015  或          http://www.mater-rep.com/CN/Y2018/V32/I15/2640
1 Yuan G M, Li X K, Dong Z J, et al. Graphite blocks with preferred orientation and high thermal conductivity[J].Carbon,2012,50(1):175.
2 Huang Q, Gu M Y. Status and prospects of metal matrix composites for electronic packaging[J].Electronics & Packaging,2003,3(2):22(in Chinese).
黄强,顾明元.电子封装用金属基复合材料的研究现状[J].电子与封装,2003,3(2):22.
3 Chen Z Z, Tan Z Q, Ji G, et al. Effect of interface evolution on thermal conductivity of vacuum hot pressed SiC/Al composites[J].Advanced Engineering Materials,2015,17(7):1077.
4 Matejicek J, Zahalka F, Bensch J, et al. Copper-tungsten composites sprayed by HVOF[J].Journal of Thermal Spray Technology,2008,17(2):177.
5 Stolk J, Manthiram A. Chemical synthesis and characterization of low thermal expansion-high conductivity Cu-Mo and Ag-Mo compo-sites[J].Metallurgical and Materials Transactions A: Physical Me-tallurgy and Materials Science,2000,31(9):2396.
6 Prieto R, Molina J M, Narciso J, et al. Fabrication and properties of graphite flakes/metal composites for thermal management applications[J].Scripta Materialia,2008,59(1):11.
7 Xue C, Bai H, Tao P, et al. Analysis on thermal conductivity of graphite/Al composite by experimental and modeling study[J].Journal of Materials Engineering and Performance,1996,26(1):327.
8 Feng W, Qin M M, Feng Y Y. Toward highly thermally conductive all-carbon composites: Structure control[J].Carbon,2016,109:575.
9 Subhra G, Niladri S, Dibyaranjan R, et al. Design of carbon nanofiber embedded conducting epoxy resin[J].Materials Chemistry and Physics,2017,186:29.
10 Davis L C, Artz B E. Thermal conductivity of metal-matrix compo-sites[J].Journal of Applied Physics,1995,77(10):4995.
11 Chen J K, Huang I S. Thermal properties of aluminum-graphite composites by powder metallurgy[J].Composites Part B,2013,44(1):698.
12 Liu Q, He X B, Ren S B et al. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating[J].Journal of Alloys and Compounds,2014,587:255.
13 Bai H, Ma N G, Lang J, et al. Thermal conductivity of Cu/diamond composites prepared by a new pretreatment of diamond powder[J].Composites Part B,2013,52:182.
14 Monje I E, Louis E, Molina J M, et al. Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control[J].Composites Part A,2013,48:9.
15 Lee M T, Chung C Y, Lin C M, et al. Effects of Ti addition on thermal properties of diamond/Ag-Ti composites fabricated by liquid sintering[J].Materials Letters,2014,116:212.
16 Lloyd J C, Neubauer E, Barcena J, et al. Effect of titanium on copper-titanium/carbon nanofibre composite materials[J].Composites Science and Technology,2010,70(16):2284.
17 Tan Z Q, Li Z Q, Fan G L, et al. Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer[J].Materials & Design,2013,47:160.
18 Ruch P W, Beffort O, Kleiner S, et al. Selective interfacial bonding in Al(Si)-diamond composites and its effect on thermal conductivity[J].Composites Science and Technology,2006,66(15):2677.
19 Liu X Y, Wang W G, Wang D, et al. Effect of nanometer TiC coated diamond on the strength and thermal conductivity of diamond/Al composites[J].Materials Chemistry and Physics,2016,182:256.
20 Kim C, Lim B, Kim B, et al. Strengthening of copper matrix composites by nickel-coated single-walled carbon nanotube reinforcements[J].Synthetic Metals,2009,159(5-6):424.
21 Huang Q, Gao L, Liu Y Q, et al. Sintering and thermal properties of multiwalled carbon nanotube-BaTiO3 composites[J].Materials Chemistry,2005,15(20):1995.
22 Shi Y J, Liu L J, Zhang L, et al. Effect of squeeze casting process on microstructures and flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy[J].Journal of Iron And Steel Research International,2017,24(9):957.
23 Xing S M. Alloys for squeeze casting and their processing properties[J].Foundry,2015,64(7):628.
24 Zeng J, Peng C Q, Wang R C, et al. Research and development of metal matrix composites for electronic packaging[J].The Chinese Journal of Nonferrous Metals, 2015,25(12):3255(in Chinese).
曾婧,彭超群,王日初,等.电子封装用金属基复合材料的研究进展[J].中国有色金属学报,2015,25(12):3255.
25 Bai L, Ge C C, Shen W P. Spark plasma sintering technology[J].Powder Metallurgy Technology,2007,25(3):217(in Chinese).
白玲,葛昌纯,沈卫平.放电等离子烧结技术[J].粉末冶金技术,2007,25(3):217.
26 Yang J Y, Chung D D L. Casting particulate and fibrous metal-matrix composites by vacuum infiltration of a liquid metal under an inert gas pressure[J].Materials Science and Engineering A,1989,24(10):3605.
27 Shi J, Che R C, Liang C Y, et al. Microstructure of diamond/aluminum composites fabricated by pressureless metal infiltration[J].Composites Part B,2011,42(6):1346.
28 Wang P P. Study on formation and evolution mechanism of interface microstructure and defects of Cf/Al composites[D].Harbin: Harbin Institute of Technology,2012(in Chinese).
王平平.Cf/Al复合材料界面显微组织和缺陷的形成与演化机制研究[D].哈尔滨:哈尔滨工业大学,2012.
29 Xue C, Bai H, Tao P F, et al. Thermal conductivity and mechanical properties of flake graphite/Al composite with a SiC nano-layer on graphite surface[J].Materials & Design,2016,108:250.
30 Li W J, Liu Y, Wu G H, et al. Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting[J].Carbon,2015,95:545.
31 Yang M J, Zhang D M, Gu X F, et al. Effects of SiC particle size on CTEs of SiCp/Al composites by pulsed electric current sintering[J].Materials Chemistry and Physics,2006,99(1):170.
32 Chu K, Liu Z F, Jia C C, et al. Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles[J].Journal of Alloys and Compounds,2010,490(1-2):453.
33 Oddone V, Boerner B, Reich S. Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity[J].Science and Technology of Advanced Materials,2017,18(1):180.
34 Kim K T, Eckert J, Liu G, et al. Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocompo-sites processed by molecular-level mixing[J].Scripta Materialia,2011,64(2):181.
35 Liu Q W, Liu C H, Fan S S. Thermal boundary resistances of carbon nanotubes in contact with metals and polymers[J].Nano Letters,2009,9(11):3805.
36 Shenogin S, Gengler J, Roy A, et al. Molecular dynamics studies of thermal boundary resistance at carbon metal interfaces[J].Scripta Materialia,2013,69(1):100.
37 Schmidt A J, Collins K C, Minnic A J, et al. Thermal conductance and phonon transmissivity of metal-graphite interfaces[J].Journal of Applied Physics,2010,107(10):429.
38 Chai G, Chen Q. Characterization study of the thermal conductivity of carbon nanotube copper nanocomposites[J].Journal of Composite Materials,2010,44(24):2863.
39 Yang B, Yu J K, Chen C. Microstructure and thermal expansion of Ti coated diamond/Al composites[J].Transactions of Nonferrous Metals Society of China,2009,19(5):1167.
40 Zhao C, Wang J. Enhanced mechanical properties in diamond/Cu composites with chromium carbide coating for structural applications[J].Materials Science and Engineering A,2013,588:221.
41 Tao Z C, Guo Q G, Gao X Q, et al. The wettability and interface thermal resistance of copper/graphite system with an addition of chromium[J].Materials Chemistry and Physics,2011,128(1):228.
42 Hell J, Chirtoc M, Eisenmenger-Sittner C, et al. Characterisation of sputter deposited niobium and boron interlayer in the copper-diamond system[J].Surface and Coatings Technology,2012,208:24.
43 Wang M Z, Wang Y H, Zhang X M. Diamond deposition techniques and their application effect[J].Diamond & Abrasives Engineering,2003(1):39(in Chinese).
王明智,王艳辉,张习敏.金刚石镀覆工艺与使用效果的关系[J].金刚石与磨料磨具工程,2003(1):39.
44 Schubert T, Ciupinski L, Zielinski W, et al. Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications[J].Scripta Materialia,2008,58(4):263.
45 Zhao Y C, Zou Q, Yan N, et al. Effects of vacuum slowly vapor deposition parameters on coating quality and diamond properties[J].Diamond & Abrasives Engineering,2006,5(27):17(in Chinese).
赵玉成,邹芹,闫宁,等.真空微蒸发镀覆工艺参数对镀层质量及金刚石性能的影响[J].金刚石与磨料磨具工程,2006,5(27):17.
46 Yu D H, Wang C Y, Cheng X L, et al. Recent development of magnetron sputtering processes[J].Vacuum,2009,46(2):19(in Chinese).
余东海,王成勇,成晓玲,等.磁控溅射镀膜技术的发展[J].真空,2009,46(2):19.
47 Kang Q P, He X B, Ren S B, et al. Preparation of copper-diamond composites with chromium carbide coatings on diamond particles for heat sink applications[J].Applied Thermal Engineering,2013,60(1-2):423.
48 IP S W, Sridhar R, Toguri J M, et al. Wettability of nickel coated graphite by aluminum[J].Materials Science and Engineering A,1998,224(1):31.
49 Wang H Y, Tian J. Thermal conductivity enhancement in Cu/diamond composites with surface-roughened diamonds[J].Applied Physics A,2014,116(1):265.
50 Yang W L, Zhou L P, Peng K, et al. Effect of tungsten addition on thermal conductivity of graphite/copper composites[J].Composites Part B,2013,55:1.
51 Chang G, Duan J L, Wang L H, et al. Thermal boundary conduc-tance of a new generation of high thermal conductivity metal matrix composites[J].Materials Review A: Review Papers,2017,31(4):72(in Chinese).
常国,段佳良,王鲁华,等.新一代高导热金属基复合材料界面热导研究进展[J].材料导报:综述篇,2017,31(4):72.
52 Ren S, Shen X Y, Guo X Y, et al. Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy[J].Composites Science and Technology,2011,71(13):1550.
53 Zhang Y, Zhang H L, Wu J H, et al. Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles[J].Scripta Materialia,2011,65(12):1097.
54 Shen X Y, He X B, Ren S B, et al. Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites[J].Journal of Alloys and Compounds,2012,529:134.
55 Bai H, Ma N G, Lang J, et al. Effect of a new pretreatment on the microstructure and thermal conductivity of Cu/diamond composites[J].Journal of Alloys and Compounds,2013,580:382.
56 Chu K, Guo H, Jia C C, et al. On the thermal conductivity of Cu-Zr/diamond composites[J].Materials & Design,2013,45:36.
57 He J S, Wang X T, Zhang Y, et al. Thermal conductivity of Cu-Zr/diamond composites produced by high temperature-high pressure method[J].Composites Part B,2015,68:22.
58 Kang Q P, He X B, Ren S B, et al. Microstructure and thermal properties of copper-diamond composites with tungsten carbide coa-ting on diamond particles[J].Materials Characterization,2014,105:18.
59 Hanada K, Matsuzaki K, Sano T. Thermal properties of diamond particle-dispersed Cu composites[J].Journal of Materials Processing Technology,2004,153:514.
60 Zhou C, Huang W, Chen Z, et al. In-plane thermal enhancement behaviors of Al matrix composites with oriented graphite flake alignment[J].Composites Part B,2015,70:256.
61 Zhou C, Ji G, Chen Z, et al. Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications[J].Materials & Design,2014,63:719.
62 Molina J M, Rheme M, Carron J, et al. Thermal conductivity of aluminum matrix composites reinforced with mixtures of diamond and SiC particles[J].Scripta Materialia,2008,58(5):393.
63 Zhu Y, Bai H, Xue C, et al. Thermal conductivity and mechanical properties of a flake graphite/Cu composite with a silicon nano-layer on a graphite surface[J].RSC Advances,2016,6(100):98190.
64 Huang Y, Su Y S, Li S S, et al. Fabrication of graphite film/aluminum composites by vacuum hot pressing: Process optimization and thermal conductivity[J].Composites Part B,2016,107:43.
[1] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[2] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[3] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[4] 刘帅洋, 王爱琴, 吕世敬, 田捍卫. 铜铝层状复合材料界面特性及深加工研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 828-835.
[5] 张晓宇,许旻,曹生珠. 高导热金刚石/铜复合材料界面修饰研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 443-452.
[6] 常国,段佳良,王鲁华,王西涛,张海龙. 新一代高导热金属基复合材料界面热导研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 72-78.
[7] 薛勇, 杨保平, 张斌, 张俊彦. 纳米碳材料摩擦学应用的最新进展和未来展望*[J]. 《材料导报》期刊社, 2017, 31(5): 1-8.
[8] 贾兴文, 张新, 马冬, 杨再富, 石从黎, 王智. 导电混凝土的导电性能及影响因素研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 90-97.
[9] 周谟金, 蒋业华, 温放放, 种晓宇. 热处理对高铬铸铁基蜂窝陶瓷复合材料耐磨性的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 117-121.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed