Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 72-78    https://doi.org/10.11896/j.issn.1005-023X.2017.07.011
  材料综述 |
新一代高导热金属基复合材料界面热导研究进展*
常国1,段佳良1,王鲁华1,王西涛2,张海龙1
1 北京科技大学新金属材料国家重点实验室,北京 100083;
2 北京科技大学钢铁共性技术协同创新中心,北京 100083
Thermal Boundary Conductance of a New Generation of High Thermal Conductivity Metal Matrix Composites: A Review
CHANG Guo1, DUAN Jialiang1, WANG Luhua1, WANG Xitao2, ZHANG Hailong1
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083;
2 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083
下载:  全 文 ( PDF ) ( 1787KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热物理性质不同的材料之间存在界面热阻,界面热阻对热传输过程产生极大的影响,并在很大程度上决定了复合材料的导热性能。金刚石颗粒增强金属基复合材料(Metal matrix composites, MMCs)充分发挥了金刚石的高热导率和低热膨胀系数的优点,有望获得高的热导率以及与半导体相匹配的热膨胀系数,可满足现代电子设备在散热能力上提出的越来越高的要求,作为新一代电子封装材料已引起广泛关注。界面热导(界面热阻的倒数)既是决定复合材料导热能力的关键因素,也是研究的难点,复合材料制备工艺、界面改性方式(金属基体合金化或金刚石表面金属化)以及改性金属种类均会影响界面热导。详细论述了界面热导理论及实验研究的最新成果,并对金刚石/金属复合材料在未来研究中面临的主要问题进行探讨。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常国
段佳良
王鲁华
王西涛
张海龙
关键词:  电子封装材料  界面热导  金刚石  金属基复合材料  热导率    
Abstract: Thermal boundary resistance(TBC) exists at interface sandwiched between two materials with different physical properties. The TBC greatly affects the heat transfer and largely determines the thermal properties of the composites. Diamond particles reinforced metal matrix composites (MMCs) give full play to the advantages of high thermal conductivity and low thermal expansion coefficient of diamond, and it has the potential to achieve a high thermal conductivity and a thermal expansion coefficient compa-tible with semiconductor. This can meet the ever-increasing demands of cooling capacity of modern electronic devices. Consequently, MMCs have attracted widespread concern as a new generation of electronic packaging materials. TBC(the reciprocal of thermal boundary resistance) is a key factor in determining the heat conduction ability of composite. In addition, the TBC is difficult to deal with since the preparation process of composite, interface modification methods (metal matrix alloying or diamond surface metallization) and modifying metal species can all have an effect. In this paper, the latest achievements in both theoretical and experimental researches of TBC are discussed. Meanwhile, the main questions faced in the investigation of diamond/metal composites are also proposed.
Key words:  electronic packaging materials    thermal boundary conductance    diamond    metal matrix composites    thermal conductivity
               出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  O551.3  
基金资助: *国家自然科学基金(51571015);国家国际科技合作计划(2014DFA51610)
通讯作者:  张海龙,男,1975年生,博士,教授,博士研究生导师,主要从事高性能电子封装材料研究E-mail:hlzhang@ustb.edu.cn   
作者简介:  常国:男,1987年生,博士研究生,研究方向为高性能电子封装材料E-mail:2007changguo@163.com
引用本文:    
常国,段佳良,王鲁华,王西涛,张海龙. 新一代高导热金属基复合材料界面热导研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 72-78.
CHANG Guo, DUAN Jialiang, WANG Luhua, WANG Xitao, ZHANG Hailong. Thermal Boundary Conductance of a New Generation of High Thermal Conductivity Metal Matrix Composites: A Review. Materials Reports, 2017, 31(7): 72-78.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.011  或          http://www.mater-rep.com/CN/Y2017/V31/I7/72
1 Li Y, Wong C P. Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications[J]. Mater Sci Eng R: Rep,2006, 51(1-3):1.
2 Wu H, Chiang S, Han W, et al. Surface iodination: A simple and efficient protocol to improve the isotropically thermal conductivity of silver-epoxy pastes[J]. Compos Sci Technol,2014,99:109.
3 Gu J W, Li N, Tian L D, et al. High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites[J]. Royal Soc Chem,2015,5:36334.
4 Shahil K M F, Balandin A A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials[J]. Solid State Commun,2012,152(15):1331.
5 Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review[J]. Prog Polym Sci,2011,36(7):914.
6 Meng W J, Huang Y, et al. Polymer composites of boron nitride nanotubes and nanosheets[J]. J Mater Chem C,2014,2:10049.
7 Mei Shengfu, Gao Yunxia, Deng Zhongshan, et al. Experimental investation on the heat disspation performance of liquid metal filled thermal grease[J]. J Eng Thermophys,2015,36(3):624(in Chinese).
梅生福,高云霞,邓中山,等. 液态金属填充型硅脂导热性能实验研究[J]. 工程热物理学报,2015,36(3):624.
8 Moore A L, Shi L. Emerging challenges and materials for thermal management of electronics[J]. Mater Today,2014,17(4):163.
9 Hung M T, Choi O, Ju Y S, et al. Heat conduction in graphite-na-noplatelet-reinforced polymer nanocomposites[J]. Appl Phys Lett,2006,89(2):23117.
10 Losego M D, Moh L, Arpin K A, et al. Interfacial thermal conduc-tance in spun-cast polymer films and polymer brushes[J]. Appl Phys Lett,2010,97(1):11908.
11 Weisheit M, Fahler S, Marty A, et al. Electric field-induced modification of magnetism in thin-film ferromagnets[J]. Science,2007,315(5810):349.
12 Wang Xitao, Zhang Yang, et al. Review on the progress of diamond particles dispersed metal matix composites with superior high thermal conductivity[J]. J Funct Mater, 2014,45(7):7001(in Chinese).
王西涛,张洋,车子璠,等. 金刚石颗粒增强金属基高导热复合材料的研究进展[J]. 功能材料,2014,45(7):7001.
13 Zweben C. High-performance thermal management materials crucial for future packaging new, high-performance materials solve key packaging problems[J]. Adv Packaging,2006,15(2):20.
14 Chen G. Nanoscale energy transport and conversion[M]. New York: Oxford University Press,2005.
15 Cahill D G, Ford W K, Goodson K E, et al. Nanoscale thermal transport[J]. J Appl Phys,2003,93(2):793.
16 Zhu J. Study on thermal transportion mechanism of solid-liquid interfaces by femtosecond laser pump and probe method[D]. Beijing: Chinese Academy of Science(Institute of Engineering Thermophy-sics),2011(in Chinese).
祝捷. 飞秒激光抽运探测法纳米材料及界面热输运机理研究[D]. 北京:中国科学院研究生院(工程热物理研究所),2011.
17 Maxwell J C. A treatise on electricity and magnetism(3rd edition)[M]. New York: Dover Publications,1954.
18 Hasselman D P H, Johnson L F. Effective thermal conductivity of composites with interfacial thermal[J]. J Compos Mater,1987,21:508.
19 Kapitza P L. The study of heat transfer in helium Ⅱ[J]. J Phys (Moscow),1941,4:181.
20 Pollack G L. Kapitza resistance[J]. Rev Modern Phys,1969,41(1):48.
21 Qiu T Q, Tien C L. Heat transfer mechanisms during short-pulse laser heating of metals[J]. J Heat Transfer,1993,115(4):835.
22 Khalatnikov I M. Heat exchange between a solid and He Ⅱ[J].Soviet Phys JETP,1952,22(6):687.
23 Swartz E T, Pohl R O. Thermal boundary resistance[J]. Rev Mo-dern Phys,1989,61(3):605.
24 Stoner R J, Maris H J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K[J]. Phys Rev B,1993,48(22):16373.
25 Lyeo H K, Cahill D G. Thermal conductance of interfaces between highly dissimilar materials[J]. Phys Rev B,2006,73:144301.
26 Choi W I, Kim K, Narumanchi S. Thermal conductance at atomically clean and disordered silicon/aluminum interfaces: A molecular dynamics simulation study[J]. J Appl Phys,2012,112(5):54305.
27 Maiti A, Mahan G D, Pantelides S T. Dynamical simulations of nanequilibrum processes-heat flow and the kapitza resistance across grain boundaries[J]. Solid State Commun,1997,102(7):517.
28 Schelling P K, Phillpot S R. Mechanism of thermal transport in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation[J]. J Am Ceram Soc,2001,84(12):2997.
29 Oligschleger C, Sch?n J C. Simulation of thermal conductivity and heat transport in solids[J]. Phys Rev B,1999,59(6):4125.
30 Jund P, Jullien R. Molecular-dynamics calculation of the thermal conductivity of vitreous silica[J]. Phys Rev B,1999,59(21):13707.
31 Baranyai A S. Heat flow studies for large temperature gradients by molecular dynamics simulation[J]. Phys Rev E,1996,54(6):6911.
32 Poetzsch R H H, B?ttger H. Interplay of disorder and anharmonicity in heat conduction[J]. Phys Rev B,1994,50(21):15757.
33 Che J, ?ag?in T, Deng W, et al. Thermal conductivity of diamond and related materials from molecular dynamics simulations[J]. J Chem Phys,2000,113(16):6888.
34 Li J, Porter L, Sidney Y. Atomistic modeling of finite-temperature properties of crystalline b-SiC Ⅱ. Thermal conductivity and effects of point defects[J]. J Nuclear Mater,1998,255:139.
35 Volz S G, Chen G. Molecular-dynamics simulation of thermal conductivity of silicon crystals[J]. Phys Rev B,2000,61:2651.
36 Che J W, ?ag?in T, Goddard W A. Thermal conductivity of carbon nanotubes[J]. Nanotechnology,2000,11:65.
37 Ladd A J C, Moran B. Lattice thermal conductivity: A comparison of molecular dynamics and anhaimonic lattice dynamics[J]. Phys Rev B,1986,34(8):5058.
38 Vogelsang R, Hoheisel C, Ciccotti G. Thermal conductivity of the Lennard-Jones liquid by molecular dynamics calculations[J]. J Chem Phys,1987,86(11):6371.
39 Schelling P K, Phillpot S R, Keblinski P. Comparison of atomic-le-vel simulation methods for computing thermal conductivity[J]. Phys Rev B,2002,65:144301.
40 Losego M D, Grady M E, et al. Effects of chemical bonding on heat transport across interfaces[J]. Nat Mater,2012,11(6):502.
41 Monachon C, Weber L. Influence of diamond surface termination on thermal boundary conductance between Al and diamond[J]. J Appl Phys,2013,113(18):183504.
42 Monachon C, Weber L. Thermal boundary conductance between refractory metal carbides and diamond[J]. Acta Mater,2014,73:337.
43 Kagnov M I, Lifshitz I M, Tanatarov M V. Relaxation between electrons and crystalline lattices[J]. Soviet Phys JETP,1957,4:173.
44 Anisimov S I, Kapeliovich B L, Perel'Man T L. Electron emission from metal surfaces exposed to ultrashort laser pulses[J]. Soviet Phys JETP,1974,39(2):776.
45 Monachon C, Schusteritsch G, Kaxiras E, et al. Qualitative link between work of adhesion and thermal conductance of metal/diamond interfaces[J]. J Appl Phys,2014,115(12):123509.
46 Monachon C, Weber L. Influence of a nanometric Al2O3 interlayer on the thermal conductance of an Al/(Si, Diamond) interface[J]. Adv Eng Mater,2015,17(1):68.
47 Monachon C, Weber L. Effect of diamond surface orientation on the thermal boundary conductance between diamond and aluminum[J]. Diamond Related Mater,2013,39:8.
48 Monachon C, Weber L. Thermal boundary conductance of transition metals on diamond[J]. Emerging Mater Res,2012,1(2):89.
49 Monachon C, Hojeij M, Weber L. Influence of sample processing parameters on thermal boundary conductance value in an Al/AlN system[J]. Appl Phys Lett,2011,98(9):91905.
50 Ujihara K. Reflectivity of metals at high temperatures[J]. J Appl Phys,1972,43(5):2376.
51 Li J, Wang X, Qiao Y, et al. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites[J]. Scrip Mater,2015,109:72.
52 Hopkins P E, Duda J C, Petz C W, et al. Controlling thermal conductance through quantum dot roughening at interfaces[J]. Phys Rev B,2011,84:35431.
53 Duda J C, Hopkins P E. Systematically controlling kapitza conduc-tance via chemical etching[J]. Appl Phys Lett,2012,100(11):111602.
54 Hopkins P E, Phinney L M, Serrano J R, et al. Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces [C]∥14th International Heat Transfer Conference. Washington,2010.
55 Collins K C, Chen S, Chen G. Effects of surface chemistry on thermal conductance at aluminum-diamond interfaces[J]. Appl Phys Lett, 2010,97(8):83102.
56 Kawarada H. Hydrogen-terminated diamond surfaces and interfaces [J]. Surf Sci Rep,1996,26:205.
57 Nichols B M, Butler J E, Russell J N, et al. Photochemical functionalization of hydrogen-terminated diamond surfaces: A structural and mechanistic study[J]. J Phys Chem B,2005,109(44):20938.
58 Zhang Y, Zhang H L, Wu J H, et al. Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles[J]. Scrip Mater,2011,65(12):1097.
59 Qi Y, Hector L G. Hydrogen effect on adhesion and adhesive transfer at aluminum/diamond interfaces[J]. Phys Rev B,2003,68:201403.
60 Maier F, Ristein J, Ley L. Electron affinity of plasma-hydrogenated and chemically oxidized diamond(100) surfaces[J]. Phys Rev B,2001,64:1.
61 Prasher R. Acoustic mismatch model for thermal contact resistance of van der Waals contacts[J]. Appl Phys Lett,2009,94(4):41905.
62 Xia Y, Song Y, Lin C, et al. Effect of carbide formers on microstructure and thermal conductivity of diamond-Cu composites for heat sink materials[J]. Trans Nonferrous Met Soc China,2009,19(5):1161.
63 Che Q L, Zhang J J, Chen X K, et al. Spark plasma sintering of titanium-coated diamond and copper-titanium powder to enhance thermal conductivity of diamond/copper composites[J]. Mater Sci Semiconductor Process,2015,33:67.
64 Abyzov A M, Kruszewski M J, Ciupiński?, et al. Diamond-tungsten based coating-copper composites with high thermal conductivity produced by pulse plasma sintering[J]. Mater Des,2015, 76:97.
65 Kang Q, He X, Ren S, et al. Microstructure and thermal properties of copper-diamond composites with tungsten carbide coating on diamond particles[J]. Mater Characterization,2015,105:18.
66 Shen X, He X, Ren S, et al. Effect of molybdenum as interfacial ele-ment on the thermal conductivity of diamond/Cu composites[J]. J Alloys Compd,2012,529:134.
67 Kang Q, He X, Ren S, et al. Effect of molybdenum carbide intermediate layers on thermal properties of copper-diamond composites[J]. J Alloys Compd,2013,576:380.
68 Sinha V, Spowart J E. Influence of interfacial carbide layer characteristics on thermal properties of copper-diamond composites[J]. J Mater Sci,2013,48(3):1330.
69 Schubert T, Ciupiński?, Zieliński W, et al. Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications[J]. Scrip Mater,2008,58(4):263.
70 Weber L, Tavangar R. On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X (X=Cr, B) diamond composites[J]. Scrip Mater,2007,57(11):988.
71 Raza K, Khalid F A. Optimization of sintering parameters for diamond-copper composites in conventional sintering and their thermal conductivity[J]. J Alloys Compd,2014,615:111.
72 Chu K, Jia C, Guo H, et al. On the thermal conductivity of Cu-Zr/diamond composites[J]. Mater Des,2013,45:36.
73 Cengel Y A. Heat transfer:A practical application[M]. New York: McgrGraw-Hill,2002:71.
(责任编辑 汪禹汛)
[1] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[2] 侯明, 郭胜惠, 高冀芸, 杨黎, 王梁, 叶小磊. 预合金结合剂成分及烧结工艺对金刚石工具性能的影响[J]. 材料导报, 2019, 33(14): 2403-2407.
[3] 吴孟武,华 林,周建新,殷亚军. 导热铝合金及铝基复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1486-1495.
[4] 王仕发,李丹明,肖玉华,杨震春,李居平,郝 剑,杨长青. 用于空间辐射环境探测的金刚石探测器研究综述[J]. 《材料导报》期刊社, 2018, 32(9): 1459-1468.
[5] 张晓宇,许旻,曹生珠. 高导热金刚石/铜复合材料界面修饰研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 443-452.
[6] 赵爽, 杨自春, 周新贵. 先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能[J]. 材料导报, 2018, 32(16): 2715-2718.
[7] 李通, 李金权, 王文广, 倪丁瑞. 影响碳/金属复合材料导热性能的主要因素探讨[J]. 材料导报, 2018, 32(15): 2640-2646.
[8] 张旺玺, 王艳芝, 梁宝岩, 李启泉, 罗伟, 孙长红, 成晓哲, 孙玉周. 纳米金刚石基于功能材料应用的研究现状[J]. 《材料导报》期刊社, 2018, 32(13): 2183-2188.
[9] 梁玉莹,吴会军,杨建明,唐兰. 气凝胶复合材料真空绝热板的热导率计算及优化[J]. 《材料导报》期刊社, 2018, 32(12): 2112-2117.
[10] 赵龙, 宋平新, 张迎九, 杨涛. 高导热金刚石/铜电子封装材料:制备技术、性能影响因素、界面结合改善方法[J]. 《材料导报》期刊社, 2018, 32(11): 1842-1851.
[11] 田艳红,乔伟静,张学军,张为芹. 聚丙烯腈基高模量碳纤维导热性能的影响因素[J]. 《材料导报》期刊社, 2018, 32(10): 1668-1671.
[12] 杨文彬,,张凯,廖治强,程金旭,谢长琼,吴菊英,范敬辉. 导热绝缘h-BN/MVQ/EVA复合材料的双逾渗效应[J]. 《材料导报》期刊社, 2017, 31(7): 137-142.
[13] 杨洋, 王罡, 俞建超, 周婷婷, 李遥, 帅茂兵. 无氧铜超精加工表面微观形貌的分形维数表征*[J]. 《材料导报》期刊社, 2017, 31(3): 52-56.
[14] 李慧慧,郭 桦,陈 琛,黄莹祥. 聚晶金刚石复合片表面裂纹视觉检测技术研究[J]. 《材料导报》期刊社, 2017, 31(24): 174-178.
[15] 周阳, 金秋, 龚小玲, 聂朝胤. Ni-金刚石复合涂层的结构优化及基础磨削性能*[J]. 《材料导报》期刊社, 2017, 31(20): 35-38.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed