Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1668-1671    https://doi.org/10.11896/j.issn.1005-023X.2018.10.019
  材料研究 |
聚丙烯腈基高模量碳纤维导热性能的影响因素
田艳红,乔伟静,张学军,张为芹
北京化工大学材料科学与工程学院,碳纤维及功能高分子教育部重点实验室,北京 100029
Factors Affecting the Thermal Conductivity of PAN-based Carbon Fiber with High Modulus
TIAN Yanhong, QIAO Weijing, ZHANG Xuejun, ZHANG Weiqin
Key Laboratory of Carbon Fiber and Functional Polymers of Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029
下载:  全 文 ( PDF ) ( 2992KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用激光闪射法测试了6种不同强度和模量的聚丙烯腈(PAN)基碳纤维(CF)的热导率,探讨了不同温度下CF轴向热导率的变化及样品厚度对热导率测试结果的影响。采用X射线衍射(XRD)、拉曼等技术检测了CF的微晶尺寸、取向及有序度,考察了CF热导率与其微观结构的相关性。结果显示,实验范围内PAN基CF样品厚度对热导率测试结果略有影响,热导率随测试温度升高而降低,PAN基CF的致密性、晶体尺寸及结构有序度对其热导率有较大影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田艳红
乔伟静
张学军
张为芹
关键词:  碳纤维  聚丙烯腈基  热导率  取向  晶体结构    
Abstract: The thermal conductivity of six kinds of polyacrylonitrile (PAN)-based carbon fiber (CF) with different strength and modulus was measured by laser flash method. The effect of the thickness of CF samples and the test temperature on the CF axial thermal conductivity was studied. The crystallite size, orientation and order degree of CF were measured by X-ray diffraction (XRD) and Raman spectroscopy. The relationship between the thermal conductivity of CF and its microstructure was investigated. The results show that the thickness of the PAN-based CF sample has a slight effect on the thermal conductivity test, and the thermal conductivity decreases with the increase of the test temperature. The compactness, crystal size and structural order of the PAN-based CF have a greater impact on its thermal conductivity.
Key words:  carbon fiber    polyacrylonitrile-based    thermal conductivity    orientation    crystal structure
               出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TQ342.74  
基金资助: 科技部863计划(2015AA03A204)
作者简介:  田艳红:女,1969年生,博士,副研究员,主要研究方向为碳纤维制备工艺及应用性能 E-mail:tianyh@mail.buct.edu.cn
引用本文:    
田艳红,乔伟静,张学军,张为芹. 聚丙烯腈基高模量碳纤维导热性能的影响因素[J]. 《材料导报》期刊社, 2018, 32(10): 1668-1671.
TIAN Yanhong, QIAO Weijing, ZHANG Xuejun, ZHANG Weiqin. Factors Affecting the Thermal Conductivity of PAN-based Carbon Fiber with High Modulus. Materials Reports, 2018, 32(10): 1668-1671.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.019  或          http://www.mater-rep.com/CN/Y2018/V32/I10/1668
1 Li S T, Peng C Y, Xing S L, et al. Research progress on thermal conductivity of carbon fiber reinforced polymer matrix composites[J]. Materials Review A:Review Papers,2012,26(7):79(in Chinese).
李仕通,彭超义,邢素丽,等.导热型碳纤维增强聚合物基复合材料的研究进展[J].材料导报:综述篇,2012,26(7):79.
2 Jana P, Fierro V, Celzard A. Sucrose-based carbon foams with enhanced thermal conductivity[J]. Industrial Crops and Products,2016,89:498.
3 Jiang W T, Ding G L, Peng H. Measurement and model on thermal conductivities of carbon nanotube [J]. International Journal of Thermal Sciences,2009,48:1108.
4 Takahiro Nomura, Kazuki Tabuchi, Chunyu Zhu, et al. High thermal conductivity phase change composite with percolating carbon fiber network[J]. Applied Energy,2015,154:678.
5 Karaipekli A, Sari A, Kaygusuz K. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications[J]. Renewable Energy,2007,32(13):2201.
6 Thurid S Gspann, Stefan M Juckes, John F Niven, et al. High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology[J]. Carbon,2017,114:160.
7 Yu G C, Wu L Z, Feng L J. Enhancing the thermal conductivity of carbon fiber reinforced polymer composite laminates by coating highly oriented graphite films[J]. Materials and Design,2015,88:1063.
8 Fei H Y, Zhu P, Song Y J, et al. Thermal conduction of thermoplastic polyimide composites modified with graphite/carbon fiber[J]. Acta Materiae Compositae Sinica,2007,24(5):44(in Chinese).
费海燕,朱鹏,宋艳江,等.石墨和碳纤维分别改性热塑性聚酰亚胺复合材料的导热行为[J].复合材料学报,2007,24(5):44.
9 Liang J F, Mrinal C Saha, Cengiz Altan M. Effect of carbon nanofibers onthermal conductivity of carbon fiber reinforced composites[J]. Procedia Engineering,2013,56:814.
10 Han Seungjin, Chung D D L. Increasing the through-thickness thermal conductivity of carbon fiber polymer- matrix composite by curing pressure increase and filler incorporation[J]. Composites Science and Technology,2011,71:1944.
11 Kim Hyeon-Hye, Han Woong, Lee Hae-seong, et al. Preparation and characterization of silicon nitride (Si N)-coated carbon fibers and their effects on thermal properties in composites[J]. Materials Science and Engineering B,2015,200:132.
12 Ye Ji Noh, Seong Yun Kim. Synergistic improvement of thermal conductivity in polymer composites filled with pitch based carbon fiber and grapheme nanoplatelets[J]. Polymer Testing,2015,45:132.
13 Hou L G, Wu R Z, Wang X D, et al. Microstructure, mechanical properties and thermal conductivity of the short carbon fiber reinforced magnesium matrix composites[J]. Journal of Alloys and Compounds,2017,695:2820.
14 Wang Z L, Tang D W, Zheng X H, et al. Simultaneous measurements of thermal conductivity, thermal capacity of an individual carbon fiber[J]. Journal of Engineering Thermophysics,2007,28(3):490(in Chinese).
王照亮,唐大伟,郑兴华,等.3ω法测量单根碳纤维导热系数和热容[J].工程热物理学报,2007,28(3):490.
15 Wang J L, Gu M, Ma W G. Temperature dependence of the thermal conductivity of individual pitch-derived carbon fibers[J]. New Carbon Materials,2008,23(3):259.
16 He F M, Li Z P, Feng Z H, et al. Evaluation of thermal-transmission properties of PAN carbon fiber at high temperature[J]. Mate-rials China,2013,32(4):236(in Chinese).
何凤梅,李仲平,冯志海,等.PAN基碳纤维高温热传输性能表征[J].中国材料进展,2013,32(4):236.17 Wang T T, Gu Y Z, Wang S K, et al. Characterization on axial thermal conductivity of carbon fiber and its influence factors[J]. Journal of Beijing University of Aeronautics and Astronautics,doi:10.13700/j.bh.1001-5965.2016.0757.
王婷婷,顾轶卓,王绍凯,等.碳纤维轴向导热性能表征及影响因素[J].北京航空航天大学学报,doi:10.13700/j.bh.1001-5965.2016.0757.
18 Krzysztof K Koziol, Dawid Janas, Brown E, et al. Thermal properties of continuously spun carbon nanotube fibres[J]. Physica E,2017,88:104.
19 Lin H, Dong H, Xu S, et al. Thermal transport in graphene fiber fabricated by wet-spinning method[J]. Materials Letters,2016,183:147.
[1] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[2] 王忠辉, 辛勇. 高分子链运动对氧气扩散行为的影响[J]. 材料导报, 2019, 33(8): 1293-1297.
[3] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[4] 赵雪妮, 杨建军, 何富珍, 张黎, 王瑶, 张伟刚, 刘庆瑶. 碳纤维表面处理及熔盐电镀Al涂层的研究[J]. 材料导报, 2019, 33(4): 674-677.
[5] 张小品, 邱松, 张兆春, 金赫华, 李清文. 基于溶液法的单壁碳纳米管水平取向排列研究进展[J]. 材料导报, 2019, 33(3): 418-425.
[6] 程灵, 杨富尧, 马光, 孟利, 陈新, 韩钰, 董瀚. 复杂服役工况下取向硅钢的磁特性与铁心材料选型[J]. 材料导报, 2019, 33(14): 2413-2418.
[7] 杨洁, 吴宁, 潘月秀, 朱世鹏, 焦亚男, 陈利. 环氧改性水性聚氨酯上浆剂对碳纤维/氰酸酯树脂复合材料界面性能的影响[J]. 材料导报, 2019, 33(10): 1762-1767.
[8] 袁大超, 郭双, 郝建军, 马跃进, 王淑芳. 脉冲激光沉积c轴取向BiCuSeO外延薄膜及其热电性能[J]. 材料导报, 2019, 33(1): 152-155.
[9] 罗妍钰,李才亮,陈国华. 螺旋碳纤维的制备:形貌控制与生长机理[J]. 《材料导报》期刊社, 2018, 32(9): 1442-1451.
[10] 吴孟武,华 林,周建新,殷亚军. 导热铝合金及铝基复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1486-1495.
[11] 高 伟,赵广杰. 硝酸和硝酸铈铵协同氧化改性木质活性碳纤维[J]. 《材料导报》期刊社, 2018, 32(9): 1507-1512.
[12] 冯婷婷, 刘梁森, 马天帅, 徐志伟, 李静, 傅宏俊, 匡丽赟, 李英琳. 伽马射线辐照改性聚丙烯腈原丝及聚丙烯腈基碳纤维的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1114-1121.
[13] 徐志超, 冯中学, 史庆南, 杨应湘, 王效琪, 起华荣. 定向凝固制备Mg98.5Zn0.5Y1合金中LPSO相的结构及其对合金电磁屏蔽性能的影响[J]. 材料导报, 2018, 32(6): 865-869.
[14] 邓杨芳, 范晓孟, 张根, 吴长波, 钟燕, 何爱杰, 殷小玮. 预氧化Cf/SiC陶瓷基复合材料及其构件的抗疲劳特性研究[J]. 《材料导报》期刊社, 2018, 32(4): 631-635.
[15] 何承绪, 杨富尧, 孟利, 刘洋, 高洁, 马光, 韩钰, 陈新. 薄规格取向硅钢中晶粒取向和尺寸对Goss晶粒异常长大的影响[J]. 《材料导报》期刊社, 2018, 32(4): 606-610.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed