Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23090157-7    https://doi.org/10.11896/cldb.23090157
  高分子与聚合物基复合材料 |
湿热环境对碳纤维复合材料防撞梁低速碰撞损伤的影响
陈历1, 朱孙科1,*, 董绍江1, 肖勇1, 宋霞2
1 重庆交通大学机电与车辆工程学院,重庆 400074
2 武汉华夏理工学院机电与车辆工程学院,武汉 430223
Influence of Wet and Thermal Environment on Low Speed Collision Damage of Carbon Fiber Composite Anti-collision Beams
CHEN Li1, ZHU Sunke1,*, DONG Shaojiang1, XIAO Yong1, SONG Xia2
1 School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 School of Mechatronics and Vehicle Engineering, Wuhan Huaxia University of Technology, Wuhan 430223, China
下载:  全 文 ( PDF ) ( 6239KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究湿热环境对碳纤维增强复合材料(CFRP)防撞梁力学性能的影响,通过建立考虑湿热效应的碳纤维复合材料失效预测模型对23 ℃干态(RTD)材料进行湿热环境下性能预测,得到70 ℃干态(ETD)和70 ℃平衡吸湿(ETW)环境下的材料性能。采用实体单元模拟复合材料力学特性,建立不同湿热环境下CFRP防撞梁低速碰撞有限元显式动力学模型,发展了考虑湿热效应Hashin失效准则的VUSDFLD子程序来判定低速碰撞时CFRP防撞梁7个方向的损伤程度。在此基础上,对与VUSDFLD子程序联合的碳纤维复合材料失效预测模型进行相同实验条件下的拉伸仿真,仿真结果与实验结果吻合良好,验证了模型的有效性。开发了基于ABAQUS接口的Python自动后处理程序来统计CFRP防撞梁各个铺层、方向的损伤单元数。结果表明,相较于23 ℃干态环境,70 ℃干态和70 ℃平衡吸湿环境下的CFRP防撞梁单元损伤率分别增加了22%、49.6%;CFRP防撞梁两端点位移分别增加了1.33 mm、4.51 mm。本研究为评价湿热环境对碳纤维复合材料防撞梁低速碰撞损伤的影响提供了新的评价方法及思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈历
朱孙科
董绍江
肖勇
宋霞
关键词:  碳纤维复合材料  湿热环境  显式动力学  VUSDFLD子程序  Hashin失效准则    
Abstract: In order to study the influence of humid and thermal environment on the mechanical properties of carbon fiber reinforced composite(CFRP) anti-collision beams, a failure prediction model of carbon fiber composite considering the humid and thermal effect was established to predict the properties of 23 ℃ dry state (RTD) materials under humid and thermal environment, and the material properties under 70 ℃ dry state (ETD) and 70 ℃ equilibrium moisture absorption (ETW) were predicted respectively. By using solid elements to simulate the mechanical properties of composite materials, builted a finite element explicit dynamic model of CFRP anti-collision beams at low speed. Developed a VUSDFLD subroutine considering Hashin failure criterion to determine the damage degree of CFRP anti-collision beams in 7 directions under low speed collision. On this basis, conbined the failure prediction model with VUSDFLD subroutine to run a tensile simulation to the carbon fiber composite under the same experimental conditions. The simulation results agreed well with the experimental results, and the validity of the model was verified. A Python automatic post-processing program based on ABAQUS interface was developed to calculate the number of damage elements in each layer and direction of CFRP anti-collision beams. The calculated results showed that, compared with under 23 ℃ dry condition, the damage rates of CFRP anti-collision beam units under 70 ℃ dry condition and 70 ℃ equilibrium hygroscopic condition increased by 22% and 49.6%, and the displacement of the two ends of the CFRP anti-collision beam increased by 1.33 mm and 4.51 mm respectively. This study provides a new method and idea for evaluating the influence of wet and thermal environment on the low-speed collision damage of carbon fiber composite anti-collision beams.
Key words:  carbon fiber composite    humid thermal environment    explicit dynamics    VUSDFLD subroutine    Hashin failure criteria
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TB33  
  U465  
基金资助: 重庆市高校创新研究群体项目(CXQT20019);重庆市教委科学技术研究计划项目(KJQN201900731)
通讯作者:  * 朱孙科,重庆交通大学机电与车辆工程学院副教授、硕士研究生导师。2011年南京理工大学博士毕业后到重庆交通大学工作至今。目前主要从事复合材料力学、结构与材料轻量化等方面的研究工作。发表论文40余篇。suncobest@163.com   
作者简介:  陈历,2019年6月于武汉华夏理工学院获得工学学士学位。现为重庆交通大学机电与车辆工程学院硕士研究生,在朱孙科副教授的指导下进行研究。目前主要研究领域为复合材料结构损伤以及汽车轻量化。
引用本文:    
陈历, 朱孙科, 董绍江, 肖勇, 宋霞. 湿热环境对碳纤维复合材料防撞梁低速碰撞损伤的影响[J]. 材料导报, 2024, 38(23): 23090157-7.
CHEN Li, ZHU Sunke, DONG Shaojiang, XIAO Yong, SONG Xia. Influence of Wet and Thermal Environment on Low Speed Collision Damage of Carbon Fiber Composite Anti-collision Beams. Materials Reports, 2024, 38(23): 23090157-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090157  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23090157
1 Feng Z H, Li J N, Tian Y L, et al. Acta Materiae Compositae Sinica, 2022, 39(9), 4187(in Chinese).
冯志海, 李俊宁, 田跃龙, 等. 复合材料学报, 2022, 39(9), 4187.
2 Chen Y Z, Zhao Y, Wang H. Journal of Materials Engineering, 2020, 48(12), 36 (in Chinese).
陈一哲, 赵越, 王辉. 材料工程, 2020, 48(12), 36.
3 Yu Z Z. Composites Science and Engineering, 2022(9), 124 (in Chinese).
于镇洲. 复合材料科学与工程, 2022(9), 124.
4 Galvez P, Abenojar J, Martinez M A. Composites Part B: Engineering, 2019, 165(11), 1.
5 Tserpes K, Tzatzadakis V, Katsiropoulos C. Composite Structures, 2019, 226.
6 Jia Z A, Li T T, Chiang F P, et al. Composites Science and Technology, 2018, 154, 53.
7 Guo F L, Huang P, Li Y Q, et al. Composite Structures, 2021, 256(2), 113098.
8 Jia B H, Ren P, Song T, et al. Materials Reports, 2024, 38(5), 22100282 (in Chinese).
贾宝惠, 任鹏, 宋挺, 等. 材料导报, 2024, 38(5), 22100282.
9 Ouyang J J, Wang F S, Kong F Q, et al. Composites Science and Engineering, 2021(9), 31 (in Chinese).
欧阳俊杰, 王付胜, 孔繁淇, 等. 复合材料科学与工程, 2021(9), 31.
10 Shokrieh M M, Poon C, Lessard L B. In: The 83rd meeting of the AGARD SMP on bolted joints in polymeric composites. Italy, 1996.
11 Shen C H, Springer G S. Journal of Composite Materials, 1976, 10, 2.
12 Laszlo P, George S. Mechanics of composite structures, Cambridge University Press, UK, 2003.
13 Shan M J, Zhao L B, Hong H M, et al. International Journal of Fatigue, 2018, 111, 299.
14 Tsai S W. Composite design (4th edition), Dayton, Think Composites, 1988.
15 Jin Z C, Jiang R C, Liu D W, et al. Materials Reports, 2022, 36(S2), 111 (in Chinese).
金振超, 蒋荣超, 刘大维, 等. 材料导报, 2022, 36(S2), 111.
16 Zhang J Y, Zhou L W, Chen Y L, et al. Journal of Composite Materials, 2016, 50(16), 2271.
17 Zhang J R, Shan M J, Huang W, et al. Acta Materiae Compositae Sinica, 2021, 38(7), 2224 (in Chinese).
张娇蕊, 山美娟, 黄伟, 等. 复合材料学报, 2021, 38(7), 2224.
[1] 贾宝惠, 任鹏, 宋挺, 崔开心, 肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响[J]. 材料导报, 2024, 38(5): 22100282-7.
[2] 潘星辰, 郜红合, 陈旭辉, 朱子兴. 乘用车座椅材料加工工艺与结构设计[J]. 材料导报, 2023, 37(22): 22090290-7.
[3] 吴国荣, 黄诗雯, 郭跃, 陈旭辉, 宋佳鑫. 面向碳中和的汽车生命周期材料发展与展望[J]. 材料导报, 2023, 37(19): 22090281-8.
[4] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[5] 陈琨, 张祥林, 安子乾, 程羽佳, 程小全, 冯振宇. 温度对碳纤维平纹布正交层合板拉伸疲劳性能的影响[J]. 材料导报, 2021, 35(16): 16195-16200.
[6] 魏玉鹏, 朱俊志, 蔺景鹏, 申永前, 江恬恬, 李庆林, 王海燕, 喇培清. 碳微/纳米纤维复合微波吸收材料的研究进展[J]. 材料导报, 2021, 35(15): 15205-15211.
[7] 张绪, 冯瑞, 张晔, 郭卫, 刘富. 民机复合材料帽型长桁压缩承载力分析与试验[J]. 材料导报, 2019, 33(Z2): 215-221.
[8] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[9] 李红, 刘旭升, 张宜生, JacekSenkara, 李光瀛, 马鸣图. 新能源电动汽车异种材料连接技术的挑战、趋势和进展[J]. 材料导报, 2019, 33(23): 3853-3861.
[10] 杨洁, 吴宁, 潘月秀, 朱世鹏, 焦亚男, 陈利. 环氧改性水性聚氨酯上浆剂对碳纤维/氰酸酯树脂复合材料界面性能的影响[J]. 材料导报, 2019, 33(10): 1762-1767.
[11] 崔海坡, 张梦雪, 张阿龙. 碳纤维复合材料假脚冲击后疲劳性能影响因素分析*[J]. 《材料导报》期刊社, 2017, 31(18): 150-154.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed