Please wait a minute...
材料导报  2019, Vol. 33 Issue (23): 3853-3861    https://doi.org/10.11896/cldb.19020049
  材料与可持续发展(二)――材料绿色制造与加工* |
新能源电动汽车异种材料连接技术的挑战、趋势和进展
李红1, 刘旭升1, 张宜生2, JacekSenkara3, 李光瀛4, 马鸣图5
1 北京工业大学材料科学与工程学院,北京 100124
2 华中科技大学材料科学与工程学院,武汉 430074
3 华沙工业大学焊接工程系,波兰华沙 02-524
4 钢铁研究总院,北京 100081
5 中国汽车工程研究院,重庆 401122
Current Research and Challenges in Innovative Technology of Joining DissimilarMaterials for Electric Vehicles
LI Hong1, LIU Xusheng1, ZHANG Yisheng2, JACEK Senkara3, LI Guangying4, MA Mingtu5
1 College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124
2 College of Materials Science & Engineering, Huazhong University of Technology, Wuhan 430074
3 Department of Welding Engineering, Warsaw University of Technology, 02-524,Warsaw, Poland
4 Central Iron & Steel Research Institute, Beijing 100081
5 China Automotive Engineering Research Institute, Chongqing 401122
下载:  全 文 ( PDF ) ( 2519KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多材料混合结构在车身上的应用可以实现汽车安全性、轻量化水平的共同提升,也是如今新能源汽车工业发展的一个主要方向。先进高强钢(Advanced high strength steel, AHSS)、铝合金、工程塑料以及碳纤维增强复合材料(Carbon fiber reinforced polymer, CFRP)等作为轻质高强材料的代表已广泛应用于白车身、覆盖件以及复杂结构件的制造中。
由于异种材料理化性能的差异,给连接技术带来了更大的挑战。对于铝合金与碳纤维增强复合材料的连接,采用普通的熔化焊接往往会使铝合金产生热影响区软化、气孔和热裂纹等缺陷以及CFRP纤维和基体部分烧损,而机械连接则会不可避免地造成腐蚀问题。同时,多材料组成的电池包壳体对连接技术也有很高的要求。因此,为了向新能源汽车提供多材料优化组合的轻量化车身结构,开发性能可靠、低成本、高效率的创新连接方法势在必行。
胶接广泛应用于铝合金/先进高强钢、铝合金/碳纤维复合材料、AHSS/CFRP的连接,可以实现密封、紧固、防腐蚀的效果。自冲铆连接(Self-piercing riveting, SPR)相比于熔化焊更适合铝合金、AHSS与CFRP的连接,国外对其连接工艺和接头强度已有较为成熟的研究。固相焊适合于金属/非金属材料的连接,国内外对回填式搅拌摩擦点焊(Refill friction stir spot welding, RFSSW)和超声波点焊在连接铝合金/CFRP、AHSS/CFRP上进行了工艺的探索和设备的改进。激光复合焊和冷金属过渡焊(Cold metal transfer, CMT)是当下大部分汽车企业主要应用的连接技术,主要用于铝合金/AHSS的连接。对于电池包壳体的连接,目前主要是使用紧固件连接,同时对特定的材料采取激光焊进行密封。
本文针对多种车身材料包括铝/CFRP、高强钢/CFRP、铝/高强钢的连接问题,详细介绍了胶接、自冲铆连接、搅拌摩擦点焊、超声波点焊、激光复合焊和冷金属过渡焊技术的应用和研究进展,讨论了连接工艺参数对接头性能和焊点失效模式的影响,论述了基于有限元分析的接头疲劳寿命预测的难点和研究现状,并简要分析了电池包箱体连接技术的研究进展。新能源电动汽车多材料混合应用推动了连接技术的进步,但仍然面临着基体损伤、界面失效、焊接周期长、设备昂贵和难以自动化等问题,还需要进行更为深入的理论和应用研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李红
刘旭升
张宜生
JacekSenkara
李光瀛
马鸣图
关键词:  电动汽车  先进高强钢  铝合金  碳纤维复合材料  电池包  异种材料连接    
Abstract: The emerging trend towards lightweight, high performance and emissions reduction is leading to the increasing use of multi-material hybrid structures in electric vehicles. Advanced high-strength steel (AHSS), lightweight alloy, such as aluminum, titanium and magnesium, as well as plastics and carbon fiber reinforced polymers (CFRP) etc. are being used extensively in the manufacture of body in white, automotive panels and complex structural parts.
Due to different physical and chemical properties of base materials, it becomes a challenging task to join dissimilar materials. For joining of aluminum alloy to CFRP, fusion welding often produces defects such as softening, porosity, hot cracks in the heat affected zone of aluminum alloy. Moreover, it causes the CFRP fibers and matrix to partially burn. Mechanical fastening can also cause inevitable corrosion and other problems. At the same time, battery pack housing, which is composed by multi-materials, has a high requirement for the joining technology. Accordingly, the use of optimized composite materials urgently need the development of innovative joining technology with reliable performance, low cost, and high efficiency in order to provide light-weight body structure for new energy vehicles.
Adhesive is widely used in aluminum alloy/AHSS, aluminum alloy/CFRP, AHSS/CFRP etc., which can achieve sealing, fastening and anti-corrosion effects. As a newly developed mechanical joining technology, self-piercing riveting (SPR) is more suitable for joining aluminium alloy, AHSS and CFRP than fusion welding. There have been mature studies on its joining mechanism and joint strength overseas. Additionally, solid phase welding is especially suitable for joining metal/composite. The novel technology and equipment of refill friction stir spot welding (RFSSW) and ultrasonic spot welding for joining aluminium alloy/CFRP and AHSS/CFRP have been explored and improved in many studies. Laser hybrid welding and cold metal transfer welding (CMT) are mainly used in the joining of aluminium alloy and AHSS in the majority of automotive enterprises. Fasteners are mainly used for the joining of battery pack, while laser welding of particular materials is used for housing sealing.
The paper reviews the advanced and alternative joining methods for CFRP to aluminum/steel, aluminum to steel and battery pack manufactu-ring, ranging from conventional adhesive bonding, weld-bonding and self-piercing riveting to new welding technologies, such as friction stir spot welding, ultrasonic spot welding, laser braze-welding and cold metal transfer welding. The effects of joining parameters on joint properties and fai-lure modes are discussed. The difficulties and research status of fatigue life prediction based on finite element analysis are discussed. These joining technologies have prominent advantages in the joining of hybrid material structure of new energy electric vehicles, but they still face the problems of matrix damage, interface failure, long welding cycle, expensive equipment and industrial automation etc., therefore further research is required to completely exploit these methods in practical applications.
Key words:  electric vehicle    advanced high strength steel (AHSS)    aluminum    carbon fiber-reinforced polymers (CFRP)    battery pack    dissimilar material joining
               出版日期:  2019-12-10      发布日期:  2019-09-30
ZTFLH:  TG424  
基金资助: 北京工业大学国际科技合作种子基金(2018-A12);碳基纳米材料北京市国际科技合作基地项目
作者简介:  李红,北京工业大学材料科学与工程学院副教授,硕士研究生导师。2006年获北京科技大学材料加工工程专业博士学位,2006—2008年在北京工业大学材料学院做博士后研究,2012—2013年在德国多特蒙德工业大学做国家公派访问学者。2013年起担任国际焊接学会(IIW)钎焊扩散焊专业委员会(C-XVII)软钎焊分委会副主席。主要研究方向为钎焊、异种材料连接和微纳连接等,已发表论文70余篇,授权国家专利14项。
刘旭升,2017年6月毕业于石家庄铁道大学,获得工学学士学位。现为北京工业大学材料科学与工程学院硕士研究生,在李红副教授的指导下进行研究。目前主要研究方向为碳纤维复合材料同铝合金的搅拌摩擦点焊。
引用本文:    
李红, 刘旭升, 张宜生, JacekSenkara, 李光瀛, 马鸣图. 新能源电动汽车异种材料连接技术的挑战、趋势和进展[J]. 材料导报, 2019, 33(23): 3853-3861.
LI Hong, LIU Xusheng, ZHANG Yisheng, JACEK Senkara, LI Guangying, MA Mingtu. Current Research and Challenges in Innovative Technology of Joining DissimilarMaterials for Electric Vehicles. Materials Reports, 2019, 33(23): 3853-3861.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020049  或          http://www.mater-rep.com/CN/Y2019/V33/I23/3853
1 Yang G F, Zhou Q F, Hou M Y, et al. International Petroleum Econo-mics,2017,25(4),59(in Chinese).杨国丰,周庆凡,侯明扬,等.国际石油经济,2017,25(4),59.2 Yu Z B. Commercial Vehicles,2015,6(6),23(in Chinese). 于占波.商用汽车,2015,6(6),23.3 Lang Y. Automobile Applied Technology,2018,33(5),104(in Chinese).郎勇.汽车实用技术,2018,33(5),104.4 Huetter J. Repairer Driven News,2017,4,5.5 http://www.gg-ev.com/asdisp2-65b095fb-19122-.html.6 Li C W. Aeronautical Manufacturing Technology,2011,20(19),88(in Chinese).李春威.航空制造技术,2011,20(19),88.7 Zhang K, Yang Z, Li Y, et al. International Journal of Adhesion & Adhesives,2013,46,7.8 Abed G H. Effects of temperature on the adhesive bonding in steel beams reinforced with CFRP composites. Ph.D. Thesis, University of Southampton,UK,2012.9 Pramanik A, Dong Y. Composites Part A,2017,101,1.10 Li H, Li Z X. Automobile Technology,2008(2),1(in Chinese).李红,栗卓新.汽车技术,2008(2),1.11 Kweon J H, Jung J W, Kim T H, et al. Composite Structures,2006,75,192 .12 Kahlmeyer M, Böhm S. Welding in the World,2016,60,767.13 Reitz V, Meinhard D, Ruck S, et al. Composites Part A,2017,96,18.14 Wu Y, Kong H J, Ding X M, et al. Fiber Reinforced Plastics/Composites,2018(4),56(in Chinese).吴瑶,孔海娟,丁小马.玻璃钢/复合材料,2018(4),56.15 Wang H, Hao H, Yan K, et al. Journal of Materials Processing Technology,2018,257,213.16 Yang X L. The mechanical properties of adhesive bonded joints for lightweight automotives. Ph.D. Thesis, Dalian University of Technology, China,2014(in Chinese).杨晓莉.汽车轻量化异种材料胶接接头力学性能研究.博士学位论文,大连理工大学,2014.17 Duan Y X, Zhang K F, Wang Z Q, et al. Journal of Mechanical Engineering,2012,48(4),44(in Chinese).段元欣,张开富,王中强,等.机械工程学报,2012,48(4),44.18 Chen L H. Auto Engineer,2014,44(14),58(in Chinese).陈丽华.汽车工程师,2014,44(14),58.19 Wu X D, Wang M, Kong L, et al. Electric Welding Machine,2016,46(4),31(in Chinese).吴小丹,王敏,孔谅,等.电焊机,2016,46(4),31.20 Franco G D, Fratini L, Pasta A, et al. International Journal of Adhesion and Adhesives,2013,43(1),24.21 庄蔚敏,刘西洋,敖文宏,等.中国专利,CN105479771A,2015.22 Landgrebe D, Niegsch R. Key Engineering Materials,2015,651-653(1),1493.23 Mandel M, Krüger L. Materialwissenschaft Und Werkstofftechnik,2015,45(12),1123.24 Franco G D, Fratini L, Pasta A, et al. Journal of Materials: Design and Applications,2012,226(3).230.25 Rao H M, Kang J, Huff G, et al. International Journal of Fatigue,2018,113,11.26 Zhang J, Yang S L. Journal of Composite Materials,2015,49(12),1493.27 Zhang J, He X C, Ding W Y, et al. Ordnance Material Science and Engineering,2018,41(3),48(in Chinese).张杰,何晓聪,丁文有,等.兵器材料科学与工程,2018,41(3),48.28 Lambiase F, Ko D C. Materials & Design,2016,107,341.29 Jäckel M, Grimm T, Niegsch R, et al. Proceedings,2018,2(384),1.30 Amancio-Filho S T, Bueno C, Dos Santos J F, et al. Materials Science & Engineering: A,2011,528,3841.31 Goushegir S M, Santos J F D, Amancio-Filho S T, et al. Materials & Design,2014,54(2),196.32 Esteves J V, Goushegir S M, Santos J F D, et al. Materials & Design,2015,66(4),437.33 André N M, Goushegir S M, Santos J F D, et al. Composites Part B,2016,94,197.34 Ogawa Y, Xiong Y, Akebono H, et al. Science & Technology of Welding & Joining,2017,23(4),1.35 Ogawa Y, Akebono H, Tanaka K, et al. Science & Technology of Welding & Joining,2018,10,1.36 Huang Y X, Meng X, Xie Y, et al. Composites Part A Applied Science & Manufacturing,2018,112,328.37 Peng J. Study on friction stir welding process of ABS and aluminum alloy. Ph.D. Thesis, Lanzhou University of Technology, China,2016(in Chinese).彭军.ABS与铝合金搅拌摩擦焊工艺研究.博士学位论文,兰州理工大学,2016.38 Wen C J, Li Y L, Zhao C, et al. Transactions of the China Welding Institution,2015,36(9),39(in Chinese).温昌金,李玉龙,赵诚,等.焊接学报,2015,36(9),39.39 Palardy G, Villegas I F. In:Proceedings of the American Society for Composites-31st Technical Conference, ASC 2016. Virginia,2016,pp.1884. 40 Zhao D W, Ren D X, Zhao K M, et al. Journal of Mechanical Enginee-ring,2017,53(24),118(in Chinese).赵德望,任大鑫,赵坤民,等.机械工程学报,2017,53(24),118.41 Balle F, Wagner G, Eifler D, et al. In: Proceeding of the 12th International Conference on Aluminium Alloys (ICAA12). Japan,2010,pp.591.42 Wagner G, Balle F, Eifler D, et al. Advanced Engineering Materials,2013,15(9),792.43 Lionetto F, Morillas M N, Pappadà S, et al. Composites Part A Applied Science & Manufacturing,2018,104,32.44 Lionetto F, Mele C, Leo P, et al. Composites Part B: Engineering,2018,144,134.45 Zhang W H. Study on resistance spot welding of dissimilar materials of aluminum alloy and high strength steel. Ph.D. Thesis, Jilin University, China,2011(in Chinese).张伟华.铝合金/高强钢异种金属电阻点焊研究.博士学位论文,吉林大学,2011.46 Zhang M J, Chen G Y, Zhang Y, et al. Materials & Design,2013,45(6),24.47 Yi Y L, Chen J P. Hot Working Technology,2016(15),49(in Chinese).衣玉兰,陈建萍.热加工工艺,2016(15),49.48 Zhang L Y, Dong W P, Liu Y F, et al. Light Industry Machinery,2017,35(1),45(in Chinese). 张立艳,董万鹏,刘雅芳,等. 轻工机械,2017,35(1),45.49 Li L Q, Xia H B, Tan C W, et al. Journal of Materials Processing Technology,2018,252,573.50 Piccini J M, Svoboda H G. Procedia Materials Science,2015,9,504.51 Chen K, Liu X, Ni J, et al. Journal of Manufacturing Science & Engineering,2017,139(8),1.52 Piccini J M, Svoboda H G. Journal of Manufacturing Processes,2017,26,142.53 Lyu X C, Li M, Li X, et al. International Journal of Advanced Manufacturing Technology,2018,96,2875.54 Lan S, Liu X, Ni J, et al. International Journal of Advanced Manufactu-ring Technology,2016,82(9-12),2183.55 Ramachandran K K, Murugan N, Kumar S S, et al. Chemistry,2015,6(22),4071.56 Zhang Z K, Yu Y, Zhang J F, et al. Metals-Open Access Metallurgy Journal,2017,7(9),338.57 Ibrahim I, Uematsu Y, Kakiuchi T, et al. Science & Technology of Wel-ding & Joining,2015,20(8),670.58 Cao R, Sun J H, Chen J H, et al. Welding Journal,2014,583(3),622.59 Silvayeh Z, Vallant R, Sommitsch C, et al. Metallurgical and Materials Transactions A,2017,48(11),5376.60 Jin X, Li Y, Lou M, et al. Chinese Journal of Automotive Engineering,2011,1(3),185.61 He X, Gu F, Ball A, et al. International Journal of Advanced Manufacturing Technology,2012,58(5-8),643.62 Lou M, Li Y B, Li Y T, et al. Journal of Manufacturing Science & Engineering,2013,135(1),1.63 Lou M, Li Y B, Wang Y, et al. Journal of Materials Processing Technology,2014,214(10),2119.64 Huang L, Shi Y, Guo H, et al. International Journal of Fatigue,2016,88,96.65 Chung C S, Kim H K. Fatigue & Fracture of Engineering Materials & Structures,2016,39(9),1105.66 Kang Y U, Xing B, He X C, et al. Ordnance Material Science & Engineering,2018,41,1004.67 Savoy Mark A, Armaki H G. Great Designs in Steel,2018,2,145.68 Dallner C, Zeiher V. Kunststoffe-International,2011,3,66.69 Schmerler R, Gebken T, Kalka S, et al. Lightweight Design Worldwide,2017,10(5),26.70 Baumeister J, Weise J, Hirtz E, et al. Procedia Materials Science,2015,45(12),1099.71 Zhao H L, Chu J P, Wang X T, et al. Auto Time,2017(24),64(in Chinese).赵河林,楚金甫,王许涛,等.时代汽车,2017(24),64.72 Cheng P. Welding Productivity,2017,10,22.73 Bai J Y. The research on laser welding process of battery bus bar for new energy vehicle. Ph.D. Thesis, Changchun University of Science and Technology, China,2017(in Chinese).白健宇.新能源汽车电池母排激光焊接工艺研究.博士学位论文,长春理工大学,2017.74 Choi C H, Hahm Y H, Kang H M, et al. U. S. patent: US20120103714A1,2012.75 Liu S L, Xia S L, Zhao J Z, et al. Automobile Applied Technology,2016(11),10(in Chinese).刘舒龙,夏顺礼,赵久志,等.汽车实用技术,2016(11),10.76 Mao Z W, Li W, Liu Y Q, et al. Chinese Journal of Power Sources,2016,40(5),977(in Chinese).毛占稳,李炜,刘宇强,等.电源技术,2016,40(5),977.77 卢胜圩.中国专利,CN106217903A,2016.
[1] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[2] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[3] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[4] 陈志国, 方亮, 吴吉文, 张海筹, 马文静, 白月龙. 半固态挤压高硅铝合金二次加热的微观组织演变[J]. 材料导报, 2019, 33(6): 1006-1010.
[5] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[6] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[7] 刘世丰,曾建民. 正向电压对赤泥等离子体电解氧化层结构和耐蚀性的影响[J]. 材料导报, 2019, 33(22): 3720-3726.
[8] 王正军. 真空感应电磁悬浮熔炼对A356铝合金组织和性能的影响[J]. 材料导报, 2019, 33(22): 3801-3805.
[9] 王磊, 易幼平, 黄始全, 董非. 固溶前深冷变形处理对7050铝合金组织和性能的影响[J]. 材料导报, 2019, 33(20): 3467-3471.
[10] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[11] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[12] 方杰, 易幼平, 黄始全, 何海林, 郭万富. 预拉伸变形对2219铝合金环形件组织与力学性能的影响[J]. 材料导报, 2019, 33(18): 3062-3066.
[13] 武靖伟, 张忠科, 车朋卫. 钎料Zn对钛/铝搅拌摩擦钎焊接头组织和性能的影响[J]. 材料导报, 2019, 33(18): 3067-3071.
[14] 丁文有, 何晓聪, 刘佳沐, 刘洋. 预腐蚀对夹层结构自冲铆接头疲劳特性的影响[J]. 材料导报, 2019, 33(18): 3089-3095.
[15] 张彪, 陈鑫, 潘凯旋, 赵康明, 于贵申. 多轴载荷下搅拌摩擦点焊接头的失效预测:一种失效经验模型[J]. 材料导报, 2019, 33(18): 3096-3100.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed