Please wait a minute...
材料导报  2019, Vol. 33 Issue (18): 3096-3100    https://doi.org/10.11896/cldb.18090197
  金属与金属基复合材料 |
多轴载荷下搅拌摩擦点焊接头的失效预测:一种失效经验模型
张彪, 陈鑫, 潘凯旋, 赵康明, 于贵申
吉林大学汽车仿真与控制国家重点实验室,长春 130022
Failure Prediction of Friction Stir Spot Welded Joints Under Multi-axis Loads: an Empirical Failure Model
ZHANG Biao, CHEN Xin, PAN Kaixuan, ZHAO Kangming, YU Guishen
State Key Laboratory of Automobile Simulation and Control, Jilin University, Changchun 130022
下载:  全 文 ( PDF ) ( 2925KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 搅拌摩擦点焊(FSSW)作为一种固相焊接技术,是适用于汽车铝质车身关键构件连接的新型工艺,且接头在服役期间处于显著的多轴应力状态。本工作采用5052H32和6061T6两种汽车铝合金制备了多种连接工况下的常规FSSW焊接接头,通过多轴加载实验获取其在多角度准静态拉伸下的失效强度,进而提出了多轴载荷下依赖于合矢力的宏观破坏准则,并给出了基于幂函数形式的临界载荷力经验判据模型,所拟合的失效包络线和实测数据吻合良好,最大预测误差为11.8%;进一步讨论了不同车用连接工况对FSSW接头静态失效特性的影响。此经验模型可为工程应用提供可靠的预测,有益于该类接头的强度安全评价和有限连接单元建模。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张彪
陈鑫
潘凯旋
赵康明
于贵申
关键词:  汽车铝合金  搅拌摩擦点焊(FSSW)  多轴抗拉强度  失效经验模型    
Abstract: As a solid phase welding technology, friction stir spot welding (FSSW) is a new process which is suitable for the joining of key components of automotive aluminum body, and the joints are in a state of significant multi-axial stress during service. In this paper, conventional FSSW welded joints were fabricated with 5052H32 and 6061T6 of automotive aluminum alloys under various joining conditions. The failure strength of multi-angle quasi-static tension was obtained by multi-axis loading tests. Thus, the macroscopic failure criterion which depended on resultant force under multi-axial load was proposed. Then the empirical criterion model of critical load was given using the power function form. The failure envelopes fitted well with the measured data, and the maximum prediction error was 11.8%. Moreover, the effect of different automotive joining conditions on static failure envelopes of FSSW joints was discussed. This empirical model provides reliable predictions for engineering applications, contributing to the strength safety evaluation and the modeling of this finite joint element.
Key words:  automotive aluminum alloy    friction stir spot welding(FSSW)    multi-axis tensile strength    empirical failure model
               出版日期:  2019-09-25      发布日期:  2019-07-31
ZTFLH:  U466  
基金资助: 国家重点研发计划(2016YFB0101601-7);吉林省校合作项目(SXGJSF2017-2-1-5)
作者简介:  张彪,2017年6月毕业于广西大学,获得工学硕士学位。于2017年9月至今在吉林大学汽车工程学院攻读机械工程(车身工程)博士学位,主要从事汽车车身结构轻量化连接领域的研究。
陈鑫,吉林大学汽车工程学院,教授,博士生导师。2008年毕业于吉林大学,车辆工程博士学位。同年加入吉林大学工作至今,主要从事汽车结构设计与轻量化,以及汽车NVH分析与控制领域的研究。在国内外重要期刊发表文章30多篇,申报发明专利20余项。
引用本文:    
张彪, 陈鑫, 潘凯旋, 赵康明, 于贵申. 多轴载荷下搅拌摩擦点焊接头的失效预测:一种失效经验模型[J]. 材料导报, 2019, 33(18): 3096-3100.
ZHANG Biao, CHEN Xin, PAN Kaixuan, ZHAO Kangming, YU Guishen. Failure Prediction of Friction Stir Spot Welded Joints Under Multi-axis Loads: an Empirical Failure Model. Materials Reports, 2019, 33(18): 3096-3100.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090197  或          http://www.mater-rep.com/CN/Y2019/V33/I18/3096
[1] Wu S N. Study on microstructure, properties and welding process simulation for aluminum alloy resistance spot weld. Ph.D. Thesis, Chongqing University, China, 2017(in Chinese).吴赛楠. 铝合金电阻点焊组织性能与焊接过程数值模拟研究. 博士学位论文, 重庆大学, 2017.
[2] Zhang J L. Study on the parameters, microstructure and properties of 5052 friction stir spot welded joints. Master’s Thesis, Tianjin University, China, 2009(in Chinese).张家龙. 5052铝合金搅拌摩擦点焊工艺及组织性能研究. 硕士学位论文, 天津大学, 2009.
[3] Qian X D, He X P, Jiao C H, et al. Journal of Hehai University (Natural Sciences), 2015,43(2), 121(in Chinese).钱向东, 何晓萍, 焦彩虹, 等. 河海大学学报(自然科学版), 2015, 43(2), 121.
[4] Lin C, Wang W W, Chen X K. Structure and design of automotive body, China Machine Press, China, 2016(in Chinese).林程, 王文伟, 陈潇凯. 汽车车身结构与设计, 机械工业出版社, 2016.
[5] Hao S F. Study on failure behavior of hot stamping high strength steel spot welds. Master’s Thesis,Beijing University of Technology, China, 2013(in Chinese).郝素锋. 热冲压高强钢点焊接头失效行为研究. 硕士学位论文, 北京工业大学, 2013.
[6] Plaine A H, Suhuddin U F H, Alcantara N G, et al.International Journal of Fatigue, 2016, 91(1), 149.
[7] Mahmood T R, Doos Q M, Al-Mukhtar A M.Procedia Structural Integrity, 2018, 9, 71.
[8] Satonaka S, Kaieda K, Okamoto S. Welding in the World, 2013, 48(5-6), 39.
[9] Marya M, Wang K, Hector L G, et al. Journal of Manufacturing Science and Engineering, 2006, 128, 287.
[10] Cheng C S.SAE Transactions,2004, 113(5), 919.
[11] Li X Y, Hao Q.International Journal of Pressure Vessels and Piping, 2003, 80(9), 647.
[12] Shen Z, Yang X, Zhang Z, et al. Materials and Design, 2013, 44, 476.
[13] Jeon C S, Hong S T, Kwon Y J, et al.Transactions of Nonferrous Metals Society of China, 2012,22, s605.
[14] Zhu X G, Wang L F, Qiao F B, et al. Transactions of the China Welding Institution, 2014, 35(4), 91(in Chinese).朱小刚, 王联凤, 乔凤斌, 等. 焊接学报, 2014, 35(4), 91.
[15] Hibbeler R C. Engineering mechanics (statics and material mechanics), China Machine Press, China, 2014(in Chinese).R.C.希伯勒. 工程力学(静力学与材料力学), 机械工业出版社, 2014.
[16] Zhu W Q. Research on optimization of welding parameters based on loads of spot welds. Master’s Thesis, Hunan University, China, 2016(in Chinese).朱伟强. 基于车身焊点载荷的焊接参数优化研究. 硕士学位论文, 湖南大学, 2016.
No related articles found!
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed