Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3801-3805    https://doi.org/10.11896/cldb.18100146
  金属与金属基复合材料 |
真空感应电磁悬浮熔炼对A356铝合金组织和性能的影响
王正军
淮阴工学院机械与材料工程学院,淮安 223003
Impact of Vacuum Induction Electromagnetic Levitation Melting on Microstructure and Properties of A356 Alloy
WANG Zhengjun
Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai’an 223003
下载:  全 文 ( PDF ) ( 1943KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 优化A356铝合金的组织和性能成为实现汽车轻量化、节能化、舒适化和多样化发展的需求之一。为进一步挖掘A356铝合金的性能潜力,本研究采用能量密度高、清洁和可控性好的真空感应电磁悬浮熔炼技术对其进行细化变质处理,并与常规复合细化变质处理进行对比。试验结果表明,真空感应电磁悬浮熔炼复合细化变质处理可使铝合金中的共晶硅相由粗大的板片状转变为细密的球形颗粒状,并在晶界均匀析出;α-Al相明显细化,呈规则圆整的等轴晶状。在真空感应电磁悬浮熔炼工艺条件下,形核功ΔG*的贡献远大于扩散激活能ΔGA;过冷度不会出现极大值;形核率I随过冷度ΔT的增加而急剧增大,实现熔体爆发生核。同时, 晶粒之间强烈的互相碰撞、对流运动致使枝晶臂被剪切而折断、破碎与增殖,导致形核率I更大,并最终遗传到凝固组织中。因此,真空感应电磁悬浮熔炼技术对A356铝合金的细化变质效果较常规工艺有显著提升,且所得合金具有更好的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王正军
关键词:  A356铝合金  细化变质  真空感应电磁悬浮熔炼  形核率    
Abstract: It is generally one of the critical demands for developing light-weight, energy-saving, comfortable and diversified automobiles to optimize the microstructure and mechanical properties of A356 aluminum alloy. For further tapping the property potential of A356 aluminum alloy, the refinement and modification of the alloy was conducted by vacuum induction electromagnetic levitation melting, a clean and well controllable techno-logy with high energy density, and the comparison in treatment efficiency between the adopted approach and the conventional one was carried out as well. In light of the experimental results, vacuum induction electromagnetic levitation melting would facilitate the convert of the eutectic silicon phase from coarse and needle-like to fine spherical particles, and the particles were uniformly precipitated at the grain boundaries. α-Al phase was also significantly refined, presenting the regular rounded equiaxed crystal. During the process of vacuum induction electromagnetic levitation melting technology, nucleation work ΔG* made far more contribution than diffusion activation energy ΔGA. There was no peak value for supercooling degree. The nucleation rate I skyrocketed as the supercooling degree ΔT went up, giving rise to the burst nucleation of the melt. Meanwhile, the sheared, broken, crushed and proliferated dendrite arms induced by violent collision and convective motion between the grains enlarged the nucleation rate I, which eventually inherited into the solidified structure. Consequently, vacuum induction electromagnetic levitation melting exhibited superior refining and modification effect to conventional technique, and better mechanical properties of A356 aluminum alloy can be obtained as well.
Key words:  A356 alloy    refinement and modification    vacuum induction electromagnetic levitation melting    nucleation rate
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TG146.2  
基金资助: 淮阴工学院博士科研启动费基金(Z301B18558)
作者简介:  王正军,淮阴工学院机械与材料工程学院,副教授。2016年6月毕业于江苏大学材料科学与工程学院,获材料科学与工程博士学位。主要从事高性能合金材料的研究与制备,在国内外重要期刊发表文章30余篇,已授权发明专利5项。
引用本文:    
王正军. 真空感应电磁悬浮熔炼对A356铝合金组织和性能的影响[J]. 材料导报, 2019, 33(22): 3801-3805.
WANG Zhengjun. Impact of Vacuum Induction Electromagnetic Levitation Melting on Microstructure and Properties of A356 Alloy. Materials Reports, 2019, 33(22): 3801-3805.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100146  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3801
[1] Sun H P, Wu J, Tang T, et al. International Journal of Minerals, Metallurgy and Materials,2017, 24(7), 833.
[2] Zhang J, Zhang D Q, Wu P W, et al. Rare Metal Materials and Engineering, 2014, 43(1), 0047.
[3] Wang Z J, Si N C. Rare Metal Materials and Engineering, 2015, 44(6), 1494 (in Chinese).王正军, 司乃潮.稀有金属材料与工程, 2015, 44(6), 1494.
[4] Sun S C, Yuan B, Liu M P. Transactions of Nonferrous Metals Society of China, 2012, 22(8), 1884.
[5] Wang K, Cui C X, Wang Q, et al. Journal of Rare Earths, 2013, 31(3), 313.
[6] Wang J, Si N C, Wang Z J, et al. Materials Review B: Review Papers, 2017, 31(2), 70 (in Chinese).王俊, 司乃潮, 王正军, 等.材料导报:研究篇, 2017, 31(2), 70.
[7] Niklas A, Abaunza U, Fernández-calvo A I, et al. China Foundry, 2011, 8(1), 89.
[8] Aguiree-de L T E, Pérez-bustamante U R, Camarillo-cisneros J, et al. Journal of Rare Earths, 2013, 31(8), 811.
[9] Wang Z J, Si N C, Wang J, et al. Journal of Materials Engineering, 2017, 45(1), 20 (in Chinese).王正军, 司乃潮, 王俊, 等.材料工程, 2017, 45(1), 20.
[10] Wang Z J, Si N C, Wang H J, et al. Rare Metal Materials and Enginee-ring, 2017, 46(1), 164 (in Chinese).王正军, 司乃潮, 王宏健, 等.稀有金属材料与工程, 2017, 46(1), 164.
[11] Lian F. Effects of magnetic field on solidification structure and modification of Al-Si alloy. Ph.D. Thesis, Dalian University of Technology, China, 2006 (in Chinese).连峰. 磁场对铝硅合金凝固组织和变质处理的影响. 博士学位论文,大连理工大学, 2006.
[12] Chen X, Geng H Y, Li Y X. Acta Metallurgica Sinica, 2005, 41(8),891 (in Chinese).陈祥, 耿慧远, 李言祥.金属学报, 2005, 41(8), 891.
[13] Zu F Q. Foundry, 2011, 60(11), 1073 (in Chinese).祖方遒.铸造, 2011, 60(11), 1073.
[14] Zu F Q, Li X Y. China Foundry, 2014, 11(4), 287.
[15] Ou Y Z Y, Mao X M, Hong M. Foundry, 2006, 55(10), 1071 (in Chinese).欧阳志英, 毛协民, 红梅. 铸造, 2006, 55(10), 1071.
[16] Liu X F, Bain X F. Master alloys for the structure refinement aluminum alloy, Zhongnan University Press, China, 2012 (in Chinese).刘相法, 边秀房.铝合金组织细化用中间合金,中南大学出版社, 2012.
[17] Department of mathematics. Tongji University. Higher mathematics, 7th Ed, Higher Education Press, China, 2014 (in Chinese).同济大学数学系. 高等数学,七版,高等教育出版社, 2014.
[18] Wu S S, Liu Y Q. Principle of material forming,China Machine Press, China, 2016 (in Chinese).吴树森, 柳玉起.材料成形原理,机械工业出版社,2016.
[19] Tian X F. Study on microstructure and mechanical properties of magne-sium alloy via lost foam casting.Ph.D. Thesis, Huazhong University of Science & Technology, China, 2005(in Chinese).田学锋.消失模铸造镁合金组织及性能研究. 博士学位论文, 华中科技大学, 2005.
[20] Su D L. Metal mechanical properties, Machinery Industry Press, China, 1999(in Chinese).束德林.金属力学性能, 机械工业出版社, 1999.
[1] 雷意, 严红革, 陈吉华, 夏伟军, 苏斌, 丁天, 黄文森. 温度对ZK60镁合金细晶板材成形性能的影响[J]. 材料导报, 2020, 34(1): 2067-2071.
[2] 瞿猛, 唐建国, 叶凌英, 李承波, 李建湘, 周旺, 邓运来. 过时效与添加Zr对Al-Zn-Mg合金耐腐蚀性能影响的对比[J]. 材料导报, 2020, 34(1): 2083-2087.
[3] 李启泉,李岩,马悦辉. 钛基高温形状记忆合金进展综述[J]. 材料导报, 2020, 34(2): 3142-3147.
[4] 朱利敏, 李全安, 陈晓亚, 张清, 王颂博, 张帅. Mg-8Gd-0.5Zr合金热压缩过程中动态再结晶行为[J]. 材料导报, 2019, 33(24): 4117-4121.
[5] 胡彬, 易幼平, 黄始全, 何海林, 王并乡, 郭万富. 冷轧变形量对2A14铝合金高筒件时效析出行为及力学性能的影响[J]. 材料导报, 2019, 33(24): 4122-4125.
[6] 盛传德, 熊新红, 朱超, 戴彭丹, 章桥新. 添加气膜孔对镍基单晶合金DD6蠕变寿命的影响[J]. 材料导报, 2019, 33(22): 3768-3771.
[7] 杨旭东, 许佳丽, 邹田春, 赵乃勤, 纵荣荣. 泡沫铝填充金属薄壁管复合结构的研究进展[J]. 材料导报, 2019, 33(21): 3637-3643.
[8] 黄晓锋, 张乔乔, 马亚杰, 魏浪浪, 杨剑桥. Mg-6Zn-1Cu-0.3Mn镁合金的半固态组织演变[J]. 材料导报, 2019, 33(20): 3441-3447.
[9] 张永皞, 孟玉堂, 范啟超, 孙明艳, 黄姝珂. “近单相”型NiTiNb形状记忆合金研究进展[J]. 材料导报, 2019, 33(19): 3272-3276.
[10] 王策, 马爱斌, 刘欢, 黄河, 孙甲鹏, 杨振权, 江静华. LPSO相增强镁稀土合金耐热性能研究进展[J]. 材料导报, 2019, 33(19): 3298-3305.
[11] 聂豫晋, 戴建伟, 章晓波. Mg-3Gd-1Zn合金在模拟体液中的腐蚀与磨损协同作用[J]. 材料导报, 2019, 33(18): 3057-3061.
[12] 武靖伟, 张忠科, 车朋卫. 钎料Zn对钛/铝搅拌摩擦钎焊接头组织和性能的影响[J]. 材料导报, 2019, 33(18): 3067-3071.
[13] 熊斯, 唐鑫, 王春霞, 胡清华. 焊后热处理对Al-Mg-Zn(-Sc-Zr)合金焊丝焊接7075铝合金焊接接头组织和性能的影响[J]. 材料导报, 2019, 33(16): 2720-2724.
[14] 张娜,程仁菊,董含武,刘文君,詹俊,蒋斌,潘复生. Sr在耐热镁合金中的应用及研究进展[J]. 材料导报, 2019, 33(15): 2565-2571.
[15] 毛虎, 杨宏亮, 史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed